Test-driven development &

Enterprise JavaBeans 3.0

B. Sc (Hons) in Internet Technologies 2008

Fabian Piau

Seamus Kelly

Supervisor

© Copyright 2007-2008, Fabian Piau, Dundalk Institute of Technology

TDD & EJB 3.0 Acknowledgments

Acknowledgments

| would like to thank Seamus Kelly my supervisor for his guidance, suggestions and
encouragement throughout this project. | would like to thank my flatmates and my
parents for their constant support. And finally, thanks to the MIAGe of Nantes and the
Dundalk Institute of technology. Without their collaboration, it would have been
impossible for me to study this year in Ireland in the Erasmus Program.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 Abstract

Abstract

Testing is a critical part of good software development. Test-driven development (TDD) also known as
Test-first development (TFD), is a technique, associated with Extreme Programming (XP) and Agile
Programming methods, in which unit test cases are incrementally written prior to code
implementation. Unit testing and selected aspects of Test-driven development can be used to improve
learning and encourage emphasis on quality and correctness. Most users of Test-driven development
use automated testing tools to facilitate code review and to encourage frequent and thorough
regression testing throughout the development. These tools, such as JUnit, are very popular.

The Enterprise JavaBeans (EJB) specification is one of several Java APIs in the Java Platform,
Enterprise Edition. EJB is a server-side component architecture that encapsulates the business logic of
an application. This technology is relatively new and complex; one of the biggest issues is that
testability has not been taken in consideration, at least not until EJB version 3.0.

The purpose of this dissertation is to present an analysis of the Test-driven development method but
not in general; this report will focus on using TDD with the latest 3.0 Enterprise JavaBeans
specification.

To achieve this goal, my reasoning falls into three parts. First, | need to carry out research into TDD in
general and in particular as applied to EJB. Subsequently, | will put TDD into practice with the
development of a prototype and sample EJB application. Lastly, | will have a good understanding of
TDD and | will be able to give my point of view and a review of this method applied to the EJB 3.0
specification.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 Table of contents

Table of contents

ACKNOWLEDGIMENTS ...coiiiiiiiiiiiinnneisiiiisisssstnessisssssssssssssssssssssssssesssssssssssssssssssessssssssssssssssssssssassssssssass 2
Y= Y 3 o 3
TABLE OF CONTENTS ...uuetttiiiiiiiiiintieiiiiiisisssstnessisssssssssssessssssssssssesssssssssssssssssssssssssssssssesssessssssasssssssssss 4
LIST OF FIGUREScccctiiiiiiutttteiiiiiiiinntteeeiiiisssnstetesssiessssssseessssssssssssseessesssssssssssessssssssssssessessssssssssssnns 6
LISTINGS ...coiiiiunnereiiiniiiiienersess s ssasne e s s s ss s saas s e e s s e s s s aas s e e s s s e s aass e e e s sasssssssnsesssssassssssnseesssssssssssnnnnns 7
1. INTRODUCTIONccoiiiiuunnrteeiiiiisinnneeeeeisiisssssseeesssiessssssseessssssssssssseessesssssssssesessssssssssssesssssssssssnnsnnes 8

B o - Tot Y ¢ U U OO PO PO 8

B o] [=Tor A0 o =T 1 | =SSN 8

1.3 REPOIE CONLONTE ..ottt e se s e e e seseseseaeaeas 9
2. LITERATURE REVIEW........uiutriiiiiiiiiinnetteiiiiiisseneeeeiiisssssseeeesssssssssssseesssssssssssssseesssssssssssssessssssssns 10

2.1 Introduction

2.1.1 Extreme Programming

2.1.2 An example tO iNTrodUCE TDD......ciiiiuiiiiiiie ettt eite e et e st eeeste e e s bae e e abeeassssaesssbeeesabaeessseeesnnes 11
2.1.3 Test-driven deVEIOPMENTcoiii ittt st sa e sbe e sar e st esat e ebeesasesneenaeesaneeas 11
DA =Xy R [= =4 =T VAT 1=3 £ =2 12
2.2, 1 A @ ST ittt sttt et e s a e et sha e st be e st e e bt e s a bt e beenabe s bt e eenbeeeabeenres 13
2.2.2 Run all tests and see the NEW 0NE failciciieciiiiiceecee e neee s 13
2.2.3 WILE SOME COUR unvriuiieiieeiieetie et et e sttt et e siteeteesateesteesaeesaseesaeesateeseesaeeeseesaseenseesseeenseenseeenseesseesnse e 14
2.2.4 Run the automated tests and see them succeed 14
N U< = Vo o T ol Yo [N 14
A R =T 1= | OO OO UPPPPRPP 14
2.3 HOW 0 SUCCEEA WIth TDDeeeeieeeiieeieesieesiieesiteesiteesttesiee st e sse e s e asstaesstessssestassseesasassseenases 15
D T A = 1T o = Vot ol U UPPPPRt 15
2.3.2 ...FOr coNtinUOUS INTEGIatioNeeiiiiiiiiiiiiiiice ettt st s sree s s bae e e sanes 15
2.3.3 Characteristics 0f @ 800 UNIt EST....c.uiiiiieiiecierie e e e ss e e saeesneeeneeeeeeas 16
2.4 THE XU “fOMULY” ..ottt ettt ettt s e et et e nane e 17
2.4. 1 REA OF GrEEN DAI? ..ottt e et e st te e e abe e e s abbeesbteeeastbeessbeessntaeessbeeenanes 17
2.4.2 TOOIS Provided DY JUNITccuiiiiiii ettt e e e stte e et e e s bae e eeaseeesaaeeesabaeesnsaaaennnes

2.8.3 SUMIMIAIY c.uitttteteeesiiiteeeesessiteeeeesssuaaaaeeesessssbaseeeessassseaeeeesanssseaaeessssssseseeesssnssssseesessnssssseeesssssseessssssseneees
2.5 Mock Objects
2.6 ENTEIPIiSE JAVABEANS ...ttt tatatatetate e setesetasssaaassnssessansssasnsnsssnsanasasans
2.6.1Java Enterprise EdItION S.......ooi ittt ettt s e et e s b e e sbae e e baeeenanee
2.6.2 The limitations of EJB 2.1.......ccecvveveennen. .
2.6.3 The problem with unit teSting EJBS 2.1.....ccuiiiiiiieiieecieeie ettt sea e e ee e nene s 21
2.6.4 Main useful improvements in EJB 3.0 fOr TDDc.covvveciiereesieeieeste e e eeeesveeseee e esree e e seaesnseenseesneees 22
2.6.5 The Model View Controller archit@CtUEoc.eivieirierieeree ettt eseae s 23
D 6 Lol (1K (o £ BTSRRI 25
3. PROPOSED SOLUTION....ccuuuiiiiiittttnnniiiiiiiieetssesiiiiitiiesssssiiiiiittessssssiiesttmssssssssiissttesssssssssssssssssssssss 26
3.1 Prototype QPPLICALIONc....vveeeeeeeeeeee ettt e et e e ettt e e ettt e e e st a e e s saa e e s saeeesatssaeasssaeesseas 26
3.2 REQUITEA EOOIS ...ttt ettt et s e st et e s et e e ane s 27
3.3.50ME PIeliMINGIY TESTS ..ooceeveeeeeeee ettt e e et e e ettt e e ettt e e e et e e e sttt a e e s taaaesssaeeastsseeassaaessseas 28

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 Table of contents

4. PLAN FOR PROGRESSION.......ccituuiiiiinniniianiiimmnssisrmmssssiesssssimasssssmsssssssssssssssssssssessssssssssssssasssssssnsssss 31
LT 0] [32
5.1 Functionalities of my sample QPPlICAtiONc.cooueevueesiiiiiieee et 32
5.2 Creating the liSt Of LOSTSuveieeeeieeeteee ettt e et e e et e e e et e e ettt e e e s e e e e s ssaaesatssaeasssaeesseas 33
5.2.1 List Of FEQUINTEMENTS.uiiiiiiieeciie et ettt e et e e et e e e et e e e e tbee e etbeeesabaeessseeesnsaeeensseeeensaaeannnes 33
LI L Ao] i =T &SRR UPPPRT 36
5.3 Examples of annotations in EJB 3.0eeeeeueeeeeeieeeeiieeeecteeeseteaesstea e et e s saeaassaseeaessaaeesnnnes 38
6. IMPLEMMIENTATIONiiiuiiiieeiiiieeiiireeeiirenessieaessiressstrasssssrssssssressssstessssstrassssssssssssssnsssssensssssennss 41
6.1 Unit testing vs. INtegration tESINGuueeeeeeuveeeeeeeeeesiiiiees e eescetete e e e esesttea e e e esserteeaaessessssenees 41
6.1.0 TWO SCENATIOS ..eeeiitieeiiiite ittt ettt e ettt ei et e ettt e e sab e sb bt e s e b et e s abbe e s e b ae e ebbe e e eabe e e s abbeeeasbbeesabbeesanbneeenes sabneens 41
(o0 B A ¥ o 1 o < o o = TP UUP PSRRIt 41
6.1.3 Integration testing .41
Lo] U 4T 4 =T VPP PPRTOPPIN 42
6.2 Dependency Injection ANd Unit TESHINGccc.eeeeecueeeeeiiieeeceeeesceeeeestteeeeteaessteaeestaaassssaassseeans
6.2.1 What is Dependency Injection?ccccccveevvieeieiveennnnen.
6.2.2 TWo kinds of Dependency INJECTIONc.ueiiieieerie ettt e e e ee et e e e aeesseesteesneeeeeenseean
6.2.3 Why Dependency Injection can €ase UNIt tESTS.......ciiiiieeiiieciiieeciieecciee e eetee e e tae e e eare e e ereeeessaaeeeans 43
6.3 Testing the functionality of the QPPIICAtIONoceccueeeeeeeeeeeeeeeeee et a e 44
6.3.1 EJBS OVEIVIEW ..eeiiiiiieiiiee ettt ettt ettt ettt e et e e et e s e bt e e e bt e e e e ab e e e e abbeeenbe e e sabbeesnbeeeenee saneeean 44
6.3.2 Functionalities in the SESSION DEANSc.eiviiiiiirie et 44
6.3.3 TESEING SESSION DEANS ...eeuiiiiiiieiieete ettt st e st et esabesabeesne e eateesaeesaseenseenaneeas 45
6.4 Order Of tEStS WIth JUNIEcooueeeeiieieeeeeeeee ettt sttt ettt et e enee s 46
(oI Lo)0 R Y= 4V =1 gl o ol PRSI 48
B.5.0 UL COMIPONENTS ...ttt s e e et eee e e ea e e e e e e ae e e e e e e s e e e e e et aeeeeeaeeeeeeeeeeeeeeeeeeeeeeeeees nannas 48
6.5.2 PAZE NAVIZATION .eiiiiiiiiii ittt e e s ettt e e e e e s st e e e e e e s et e e e e e e se st baa e e e e e ettt e aeeesanatraeaeeeaees 48

6.5.3 Managed bean
7. CONCLUSION.......ciiiiitittmuiiiiititeteseeiiiitttessassisiestttsssssssissstersssssssssesssteessssssssssssseessssssssssssenssssnsssss 50

7.1 Review of aims and objectives
7.2 Problems @NCOUNTEIEU............ccecuueeeeeeieeeeiieeeeieeeeecte e e sta e ettt e e ette e e astaesstteasasteesastnesssteasasnes
7.3 LEGAINING OULCOMIES. ...ttt ts et e teteteteaanasasaeaasaaaasasasssasasasasasans

7.4 PrOJECt CONCIUSION ...ttt sttt s e st et e et eesate st e eaeenane
7.4.1 Some TDD technicalities............
7.4.2 What others think about TDD
7.4.3 What | think @DOUL TDDciiiiiiiiieieeiee sttt ettt sttt sttt sa et e st s b e sbteesbeesaaesabeenbaesareens

8. REFERENCESuuuuiiiiii s sssssasssassssssssssssssssssssssssssssssssssssnsnes 55
9. APPENDICEScuuurissssssssssasssasssassans 57

9.1 Sample ApPliCAtioN SCrEENSNOLS............cceecuveeeesiieeeeeee et e et e e st e e st e e e s ete e e s ssaeaesssseaeessseaessnnees
9.2 REIEVANT SOUICE COURS.....cccnveeeeiiieeeeee et ettt ettt e st e e sttt e e s sataa s s sasteessatesesssseassaseeas
9.3 UML Diagram of the prototype QPPlCALION.............c..eeeecueeeeeeiieeeeeeeesie et e st e e seeeeseaae e s
9.4 Simplified Entity Relationship Diagram of the prototype application....
LR Wolole [q'=] (o [or o] g0 (e |1] o[-
9.6 SQL SCIIDES ..ttt ettt s s e s e s e aaaaasaaaasaaaaaaaaaaaaaaaaaaaaaaaaaaasasaseseeseeseesesesseesesesessrees
9.7 How to deploy and start the sample appliCation................occcuveeeeeceeeeciieeeeiieeeeeieeesciee e s e

9.8 How to deploy and start the sample application using JDeveloperccovvueeeeeeeecvivennnann.
LI G (XX Yo | SN 73
9. 10 ACTONYIMS ...ttt et sasasaaaaaaaaaaaaaaaaasasaaaaaaaaaaaaaaaaaaaaaseseeesaseeeesesesesesesesessseseessess 74

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 List of Figures

List of Figures

Figure 2.1.1: The 13 primary XP PractiCescccceesiiiiiirrmmnniiiiiiiinenseiiiiniiimmesssssiiieessssssimmesssssses 10
Figure 2.1.3: TDD lfECYCI ..cuuuurriiiiiiiiiieeiiiiiiiiiceieeiieesineesnnnessesssteesnnsssssssssssesnnssssssssassnnssssssssssssennnnsnns 11
Figure 2.2: The StePs Of TDDccceeeeeereeeeeermeeereeemeeeeeeemeeemeeemeeemeeesseemessssesssesssesssssssesssessssesssesssssssssssenses 13
Figure 2.3.2: Typical enterprise SCenario [1]....cccccceiiiiiiiiiemmriiiiiiiiiennniiiiiiiireeennsiesieessnsssssssssennsssses 16
Figure 2.4.1: Red / Green Bar [10]......ccccceeeeeeieirrrnneeeeeiiccessnnneesessseessssnnseesssssesssnssssssssssssssnnsssssssasssssnnns 17
Figure 2.6.1: JEE multitiered architecture..........cciiiiiiiiiieeciiiiiinrerccs e ressnssssssssssesnnnessas 20
Figure 2.6.4: Managed Object/Regular Object diStinCtionccccvveeeeeeerrcccsssnneeeeessiecsssnneeeeesessennnn 22
Figure 2.6.5.1: Model View Controller architecture........cccccceeiiiiiiiiiiieeniiciniinneeenniiinniieennneseeseeennes 23
Figure 2.6.5.2: JSF in the Presentation Tier......ccccccceiiiiiiiiiieneiiiiiiniininnsiiiiniiinessssiiessssssseesses 24
Figure 3.2: JDeveloper IDE running under WindOWS........ccceeeiiiiiiiiiieenniiiniineeennssiiiieenmssssssssesnnes 27
Figure 3.3-1: UML diagram SampPlecccceiiiiiiiemeeiiiiiiiinimmmniiiiiiiessssiiimesmsssiesmsssssssssssses 28
Figure 3.3-2: Success is displayed by a “green bar”..........ccueiiiiiiiiiiiiiniiciniiieeeenncennneensssssssesssesnnes 30
Figure 3.3-3: A failure in one of the tests is displayed by a “red bar”ceeeeeeeeeemeeereeeneeeeeeeeeeeeeeennees 30
Figure 5.1: Use €CaSe Diagramc.ccceiiieueiiiiiniiiienniiiieneiiiessisiessisisssssissssstsssssstissssssssssssssssssssssnssssssnnes 33
Figure 5.3: Residence and Apartment relationship.......ccccccccciiiiiiiiiiiiiciiiiniiinnneeeees 39
Figure 6.5.2: Navigation diagram generated using JDeveloper.........cccccceeieiiiiireeennciiiiniinenneesisssenneeennes 49
Figure 7.2: The “cancel” DULLONcceeeeeiieiieiiiiiieeiieeeieeeeeeereeeeeeeeeeeeeeeseeeseeesseesseesssessessssesseesssesssesssennes 51
Figure A-9.1-1: LOGIN PABE ..ceuuuriiiiiiiimnuniiiiiiiiiresssssiisiiimesmssssssssiimesssssssssssssesssssssssssssssssssssssssssssssnsssses 57
Figure A-9.1-2: Manager management SUD-MEeNUccciiiieeeiiiiiiiiiiinniiicnnineeeenniisniieesnsssssssssseennes 57
Figure A-9.1-3: Customer management, add a new customer function...........ccccceeeiiiiiiiiiicnnneciiniisinene 58
Figure A-9.1-4: Customer management, view customer functionc..ccceriirreeenciiiiiiineneesisiienneeenne 58
Figure A-9.1-5: Rent out an apartment function, step 3: apartment selection..........cccccceveueecciirrnnenee. 59
Figure A-9.1-6: Statistics fFUNCLIONcccuuuuiiiiiiiiiiiriiinirr e sss s e e s sassssssssssseennansses 59
Figure A-9.3: FUll UML diagram.......cceeeuueiiiiiiiieiieesieirieeeennnsesessseeennnssssssssssesnnnssssssssessnnnssssssssssssnnnnnnns 63
Figure A-9.4: Simplified Entity diagrami........ccciieeviiiiiiiiininiiiiiiiiiieniiiieesesiineessssseesssssses 64
Figure A-9.8: The project is opened in JDEVEIOPET.......cccvieeeecciiiiiiieeeercecerereeennnseeesseeeennnsssssssesseennnns 71

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 Listings

Listings

Listing 3.3-1: Trivial UnNit test ...ccoiiiiiieiiiiiiiieiisccis e ceces s e eesnesseseseeseeennsssssssseeennnnsssssssssesnnnnnnes 28
Listing 3.3-2: AnOther Unit test......ccciieiiiiiiiiiiiiiiiiiiniiiieieiiiiniieesseesiisniiseesssssssssstiesssssssssssssssssssssss 29
Listing 5.3-1: A basic example of anNotatioN........ccoivieeeeecciiiiiiiiiccccc e e e e s e e s nanenes 38
Listing 5.3-2: The Local annotationccciiiiiieiiiiiiiiininnniiiiiiiinssiiineessessiieessssssssesssssses 39
Listing 5.3-3: Annotations in relation with databases........ccccvrireeiiiiiiiiiircccccrr e, 39
Listing 6.2.1: A dependency injection using field injectioncccccccceiiiiiiiririniiiniininnnnnneeee. 42
Listing 6.2.2: A dependency injection using setter injectionccceeceeiiiiiiiieeeccciinreeereenecceeeeeeeennes 43
Listing 6.3.3-1: Replacement of entity by a simple list in the mock object...........cccevreveriiiiinrnnnnee. 45
Listing 6.3.3-2: Run the tests against the mock objectsccccoeveeeeeiiiiiiiiiieccccccrrrrrre e e, 45
Listing 6.3.3-3: Run the tests against the database.....cccccccviiiiiiiiirieiiiiniiinnnn e, 45
Listing 6.4-1: Manager Unit test SAMPIEcccceeeeiiiiiiieiicccccrrrrereeereee s e e s eeennssseeesseeennnsssssssssseesnansnes 46
Listing 6.4-2: Merging into a unique Unit testccoiiirieueiiiiiiiiiiiniiiiiinieinnnesssssnnnnnessaesses 47
Listing 6.4-3: A suite to control the order of testccvveiiiiiiiiiiiiicniiicrrrr e eenees 47
Listing 6.5.1: JSP tags to access your Ul cOmMPONENtSccceeiiiiiiiirmnnsiiniiiiensmsiiiiiiiesssssesnes 48
Listing 6.5.2: NaVigation Model....cccuueeuiiiiiiiiiieiiiiiiiieiincncinniresneesessessseennssssssseeesnssssssssssssesnnnsnes 49
Listing 6.5.3: The login managed bean referenced in the face-config.xml file.........cccceereeereeeeeennee. 49

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 1. Introduction

1. Introduction

1.1 Project Aims

The aims of the project are:

v

To carry out an in-depth study of Test-driven development applied to a recent technology:
EJB 3.0, a server-side component architecture. | will have to use a variety of resources, e.g.
journals, books, the Internet, etc.

To develop an EJB application prototype using the Test-driven development method, i.e.
using test, code and refactor cycle.

To provide a critical analysis of TDD as applied to development using EJB 3.0 specification.

1.2 Project Objectives

In order to realise the aims, | will have to:

v

v

Research the literature on Test-driven development applied to EJB

Write a literature review

Make an interim presentation about Test-driven development to explain “where am | going?”
Improve my skills in JAVA Enterprise Edition (J5EE), especially in the EJB 3.0 specification
Learn new tools such as JDeveloper IDE, JUnit and EasyMock frameworks

Test, write, and refactor part of an EJB application to investigate Test-driven development
Present an analysis of Test-driven development

Make a final presentation about TDD applied to EJB 3.0

Write a report (this one!)

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 1. Introduction

1.3 Report Content

The report will give a detailed explanation of the following topics and will provide answer to the
following questions.

v" A detailed presentation of TDD
> What are the fundamental basics of TDD?
> Whatis a unit test?
> Which main types of unit testing tools can | find?
> How to succeed with TDD?
v" The EJB specification
> Whatis the EJB specification?
> Why are EJBs difficult to test-drive?
> What are the new features in the EJB 3.0 specification?
> Why is this last version more suitable for TDD?
v" Put TDD into practice
> How to write a set of tests?
> What are the main steps to create an EJB 3.0 application using TDD method?
v Conclusions about TDD applied to EJB
> What are the advantages and issues of TDD in general?

> What are the problems | have encountered?
> What is my personal opinion?

In this last part, | will try to give an objective point of view.

It is assumed that the readers of this report are quite familiar with Java Enterprise Edition.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0

2. Literature Review

2. Literature Review

2.1 Introduction

2.1.1 Extreme Programming

In 1999, Extreme Programming (XP) appeared on the horizon and, where it was adopted, everything
changed! XP is a programming methodology that places developers at the centre of the process.

(Corbett [6]))

In this agile model, there are currently (last revision) 13 primary practices and 11 corollary practices.
As Figure 2.1.1 shows (Jeffries, 2001 [17]), Test-driven development plays a main part in the primary
practices. Indeed, TDD is a core practice of XP which has become a widely adopted practice. Testing
software from the beginning and throughout the entire development cycle is an essential software
engineering practice. The Extreme Programming method takes this a step further and recommends
an evolutionary approach to design that follows a test-code cycle of continually switching between

coding and testing. (Olan, 2003 [8])

XP Practices Thols

Team

Colleclive Coding

/ Development

\

Customer Pair)

Tests - Programming Tﬂnn.‘] |
f.onhnuous \ Simple i‘)us‘iai:iab\a
lntegration Design Pace

Metaphor -
Small
Releases

Figure 2.1.1: The 13 primary XP practices

B.Sc Internet Technology

Ownership Test-Driven Standard

Planning
Grame

wena oo gravming.com

November 2007 — May 2008

TDD & EJB 3.0 2. Literature Review

2.1.2 An example to introduce TDD

Consider a convincing example. If you were building a car, you would probably construct each of its
many complex components separately. Unless you tested each piece individually before assembly,
you would have a lot of trouble to figure out why the car does not run correctly after you put all the
components together. For example, is it the battery or the motor which is faulty? Without having
evaluated each piece before, you have no way of knowing whether one or more of the pieces was
built incorrectly, whether your integration was faulty, or both. You can imagine the amount of time
you would waste trying to analyze what was wrong with the car.

If you tested each component by itself before assembly, you would be able to focus your debugging
efforts on the integration, i.e. the way you assembled the car. And since you would have confidence
in the individual pieces of the car, you would have more confidence in the car as a whole.

Exactly for the same reasons, it is important to unit test software.

2.1.3 Test-driven development

Although software testing has always been used by developers, it was typically performed after the
code was designed and written. | think a great number of developers can attest that writing tests
after coding is difficult to do and the tests themselves are often omitted when time runs out. Test-
driven development attempts to resolve this problem and produce higher quality, well-tested code
by “putting the cart before the horse” by writing the tests before developers write the code.

“Only ever write code to fix a failing test.”(Lasse, 2007 [1]). “If you can’t write a test for what you are
about to code, then you shouldn’t even be thinking about coding.” (Chaplin, 2001 [2]). These two
sentences are full of sense about principles and objectives of Test-driven development.

Test-driven development was born because of software developers looking for a way to develop
software better and faster. (Lasse, 2007 [1])

Indeed, developers are familiar with the experience of making a change to an application, testing it,
and releasing it, only to discover that the change they have made has broken something else in the
application. In others words, unless you test your application fully, you cannot be sure the changes
you make will not affect another part of the system and these tests can take a considerable amount
of time.

Figure 2.1.3: TDD lifecycle

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 2. Literature Review

Test-driven development alters the process of writing code so this change is not only possible, but
desirable. It revolves around three basic activities: writing a test, writing code to pass the test, and
refactoring the code to remove duplication, make it simpler, more flexible, and easier to understand.
Thus, development occurs in rapid iteration cycles between developing, verifying and correcting
code. (see on previous page — Figure 2.1.3 (Hohpe et al., 2002 [16]))

Writing tests before writing the implementation class itself might seem curious (it was my first
feeling) but it forces the developer to think about exactly what the client needs, the functionalities
he requires. This helps the developer avoid writing extra code for functionalities that will be never
used.

The cycle “testing, developing, verifying and correcting” is repeated frequently, each time running all
the tests in order to ensure that the product is kept in a working state. The long gaps between the
design, coding, and testing phases have disappeared. Therefore, the design (and code) actually
improves rather than degrades as the project matures. (Stott and Newkirk, 2004 [32])

2.2 Tests are everywhere!

The fundamental idea of Test-driven development is to write tests before writing the code to be
tested. As the code is written, the developer will have immediate confirmation of whether or not a
new piece of code is completely functional, close to working or going to be a complete disaster.

Thus, first the developer writes a test, and then he writes code to make the test pass. After that, he
finds the best possible design for what he has, relying on the existing tests to keep the code from
breaking. This approach to building software encourages good design, produces testable code, and
avoids over-engineering of the systems because of flawed hypotheses. And all of this is accomplished
by the simple act of driving the design with executable tests that guide towards the final
implementation. (Lasse, 2007 [1])

An essential aspect of unit testing is to test one feature at time; the developer needs to know exactly
what he is testing and where any problems reside. Test code should communicate its intent as simply
and clearly as possible.

With traditional testing a successful test finds one or more defects. It is the same with TDD; when a
test fails you have made progress because you now know that you need to resolve the problem.
More importantly, you have a clear measure of success when the test no longer fails. TDD increases
your confidence that your system actually meets the requirements.

An interesting side effect of TDD is that you come close to achieve 100% coverage test, i.e. every
single line of code is tested; something that traditional testing does not guarantee.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 2. Literature Review

The steps of TDD are shown below with a simple automate (Ambler, 2003 [10]):

[Pass]

Run the tests

ey

[Fail]

Make a little
change

|
|

[Pass,
] Development
continues]

[Pass,
Development stops]

Copyright 2003-2006 Scott W. Ambler

[Fail] [
l Run the tests

Figure 2.2: The steps of TDD
2.2.1 Add a test

In Test-driven development, each new feature begins with writing a test. The first time, the test must
inevitably fail because it is written before the feature has been implemented; it is logical! In order to
write a test, the developer must understand the specification and the requirements of the feature
clearly.

2.2.2 Run all tests and see the new one fail

This validates that the test is “working correctly” and that the new test does not mistakenly pass
without requiring any new code. At first sight, it does not make sense but, running the new test to
see it fail the first time is a vital “sanity check”.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 2. Literature Review

2.2.3 Write some code

The next step is to write some code that will cause the new test to pass (Wikipedia [15]). The new
code written at this stage will not be perfect and may, for example, pass the test in an inelegant way.
That is acceptable because later steps will improve and hone it. It is important that the code written
is only designed to pass the test; no more no less.

2.2.4 Run the automated tests and see them succeed

If all test cases now pass, the programmer can be confident that the code meets all the tested
requirements. This is a good point from which to begin the final step of the cycle.

On the contrary, if not all the test cases pass, the developer has to keep working until they do and do
not start on any new features. (Wikipedia [15])

2.2.5 Refactor code

Refactoring is a disciplined way of transforming code from one state or structure to another,
removing duplication, and gradually moving the code toward the best possible design. By constantly
refactoring, developers grow their code base, evolve their design incrementally, make the code more
maintainable, making it simpler, more flexible, and easier to understand; for example, dividing a class
or method into parts. (Lasse, 2007 [1])

Refactoring is an essential step in Test-driven development, providing the necessary feedback that
allows your design and your code to improve as the product grows. The power of refactoring lies in
its ability to reduce the danger inherent in making changes to working code. Any change will
potentially introduce errors and thus tests must be repeated often. By re-running the test cases, the
developer can be confident that refactoring is not damaging any existing functionality. (Olan, 2003
(81)

It is important to say that refactoring restructures existing code, alters its internal structure but does
not change its external behaviour. You can find an example of code refactoring in the appendices. (p.
65)

2.2.6 Repeat

Starting with another new test, the cycle is then repeated to push forward the functionality. The size
of the steps can be as small as the developer likes, or get larger if he feels more confident. If the code
written to satisfy a test does not work fairly quickly, then the step-size is certainly too big, and maybe
the smaller testable steps should be used instead.

NB

Remember that the premise for unit testing is that you write tests to test your application's
functionalities. You run your unit tests after you have made any changes to the system. If all tests
pass, you can be confident the application still executes as you intended. But, you still have no
guarantee it will, because it is absolutely possible the change might cause a problem a unit test does
not cover.

Lastly, it is important to emphasize that the tests document the code. One can see exactly what the

code does by looking at the tests. Of course, tests are not sufficient for documentation but they form
an important part of it.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 2. Literature Review

2.3 How to succeed with TDD

Here are some best practises | found on diverse websites which will be useful during the
development of my application.

2.3.1 Best practices...

v

v
v
v

2.3.2..

SRRV NN

<\

Only work on one test at a time, do not write too many tests and then try to pass them all in
one time.
Do not be afraid of doing something trivial to make the test work.
Never write a test that succeeds the first time.
Make test assertions self-explanatory so other developers can easily see what the code is
supposed to be doing just by reading the tests.
Make the structure of your test projects follow the structure of the projects they are testing
so developers can easily navigate from the tests to the code they are testing and vice-versa.
Keep the tests small:

> More than 15 minutes on the same test is probably too long. Focus will be lost.

> If a test looks complicated, think of ways to break it down. If a test involves several

methods or classes then either:
- Write tests for those first and work your way up to the bigger test.
- Fake them to pass this test and then work your way down to implement each of
them one test at a time.

If you are working in team, integrate your code changes every few unit tests to make sure
there are not any nasty surprises waiting for you in someone else’s changes.
If you are working alone, end every day with one broken test to help you quickly refocus the
next morning.
If you are working in a team, never ever leave with broken tests!
Take regular breaks and work reasonable hours. TDD is supposed to set a pace that can be
sustained indefinitely.

For continuous integration

Before integrating your code changes, inform all team members. Until you have a successful
build on the integration server, nobody else should consider integrating their changes. An
integration server acts as a monitor to the repository. Every time a commit against the
repository finishes, the server automatically checks out the sources onto the integration
machine, initiates a build, and notifies the committer (Fowler, 2006 [11])

Get any changed files that have been checked in to your team’s repository since you last
checked out the code and merge those with your changes.

Run all of the tests.

Do not integrate if any of the tests fail.

If all tests pass then check in your code changes.

Do a build with the latest code in the repository on the integration server and run all of the
tests against that build.

If all the tests pass then you have a successful build and other developers can start to
integrate.

If any tests fail then you have a broken build, which means nobody else can start integrating.
Your team’s priority is now to find out why the test(s) fail and fix the problem.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 2. Literature Review

Source repository Continuous integration server
E——— B T
(2) Developer (3) Change triggers @
commits changes a new clean build

V
Y

(1) Developer runs =
subset of tests locally

Developer’s

workspace

A

(4) Developer gets a build/test report via email

Figure 2.3.2: Typical enterprise scenario [1]

Most of this advice concerns work in a team. For my project, | will be “alone” to program my
application, nevertheless, this advice is very interesting and it is what happens in reality. Indeed,
when you work in a company, you rarely have the opportunity to code alone or it is only on small
projects.

2.3.3 Characteristics of a good unit test

Following research, | have found the following characteristics to create a good unit test. A good unit
test:

v" Runs fast (i.e. short setups, run times) because if the tests are slow, they will not be run
often, as time is very important for a company.

v" Uses data that makes them easy to read and to understand and tries to use real data. (e.g.
copies of production data)

v' Separates or simulates environmental dependencies such as databases, file systems,
networks, etc. Tests that depend on such dependencies will not run fast, and a failure does
not give meaningful feedback about what the problem actually is.

v'Is very limited in scope. If the test fails, it is obvious where to look for the problem. Use few
Assert calls (see next part on the next page “The xUnit family”) so that the offending code is
obvious. It is important to only test one thing in a single test.

v Runs and passes in isolation. If the tests require special environmental setup or fail
unexpectedly, then they are not good unit tests. Change them for simplicity and reliability.
Tests should run and pass on any machine.

v' Often uses stubs and mock objects. If the code being tested typically calls out to a database
or file system, these dependencies must be simulated, or mocked. These dependencies will
ordinarily be abstracted away by using interfaces. Mock Objects will be addressed in more
details afterwards (see p. 19).

v' Clearly reveals its intention. Another developer can look at the test and understand what is
expected of the production code.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 2. Literature Review

2.4 The xUnit “family”

Putting TDD into practice does not have to be daunting. Many resources exist to help you. The tests
used in TDD are automated unit tests, designed to validate that a unit or module of code is working
properly (Corbett [6]). To support the creation of these automated tests, unit testing tools exist for
almost every programming language imaginable. The most famous software is the xUnit family. By
family, | mean set of versions for most programming languages (CppUnit for C++, JUnit for Java,
NUnit for .NET, PyUnit for Python, VBUnit for Visual Basic, etc.). In this part, | will talk about JUnit
because it is the tool | will use to develop my application. You should be aware that other tools exist
outside the xUnit family, such as TestNG, Cactus, etc.

2.4.1 Red or Green bar?

Refactor code
[Tests unbroken]

Refactor code
[Test(s) broken]

Fix functional code

Can't think of

write failed test
any more tests

Copyright 2003 Scott W. Ambler

Figure 2.4.1: Red / Green bar [10]

Each time it runs a test suite, JUnit displays a bar green to indicate passed tests and displays the bar
red to indicate a failed test. The slogan on the JUnit official website is “Keep the bar green to keep the
code clean.”

This software is freely available for download on the web, so the cost is not a problem. However,
downloading, installing, and learning to use these tools can be non-trivial for developers, especially if
they are relatively new to computing.

2.4.2 Tools provided by JUnit

JUnit is the primary Java test framework for developers. Written by Erich Gamma and Kent Beck, it is
distributed as an open source project and defines a common language for writing and running
repeatable tests. JUnit uses reflection to examine the tests and code under tests. Reflection is the
process by which a computer program can observe and modify its own structure and behaviour
(Wikipedia [15]). JUnit uses reflection to automatically locate all testXXX() methods in your test case,
adding them to a suite of tests. It then runs all tests in this suite. This allows JUnit to execute any

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 2. Literature Review

method of any class and examine the results. With this framework, all developers on the project
know how to write and execute tests, and interpret test results using the following tools:

v TestCase: Abstract class for implementing a basic unit test

v' TestSuite: Composite class for organizing and running groups of tests

v Assertions: For testing expected results (assertNotNul 1 (. .),
assertEquals(..), assertSame(..), etc.), assertions are expressions that describe
what must be true when some action has been executed

v" TestRunner: Application - Graphical (red/green bar) and text-based test runners

v' Failure: Indicates a checked test assertion failed (i.e., assertNotNul I (. .) returned
false)

v" Error: Indicates an unexpected exception or setup failure that stopped the test

v' Setup: Code that is run before every test method is executed (e.g., logging in as a particular
user)

v' Teardown: Code that is run after every test method has finished (e.g., deleting rows from a
table that were inserted during the test)

In this part, | have presented JUnit 3.8 which actually is not the latest version of JUnit (the current
version is 4.0) but the version | will use to create my sample application.

JUnit is widely accepted as a standard for unit testing in Java. Many of the available testing products
on the market are either based on, or extend, JUnit. Also, many IDEs currently have built-in support
for JUnit. To make my application, | will use JDeveloper, an IDE from Oracle which perfectly integrates
the JUnit framework.

2.4.3 Summary

A TDD project might generate thousands, or even hundreds of thousands of tests. Given that
everyone on the team will be going through the "write a test, fix the code, refactor" cycle frequently,
it is essential that the programmer both writes and runs tests efficiently (Stott and Newkirk, 2004
[32]). A test framework like JUnit is designed to help him to do this. It allows arranging the test cases
into individual projects that can be loaded into JUnit in the same way as creating projects in an IDE. It
is also possible to display all the project's test cases in a hierarchy, run tests individually or as a suite,
and see the result of their execution as pass (green) or fail (red) with detailed information about each
failure (see Figure 3.3-3 p. 30)

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 2. Literature Review

2.5 Mock Objects

One of the biggest challenges developers have to face when they write units tests is to make sure
that each test is only testing one thing. It is very common to have one object dependent on other
objects to do its work. In this case, if the developer writes a test for a method, he will test not only
the code in that method, but also the code in the other classes. This is a problem. To avoid this
situation, “Mock Objects” are used.

A Mock Object emulates a real class and helps test expectations about how that class is used. In
other words, it is an object that pretends to be a particular type, but is really just a “sink”, a fake
object that replaces a real one, implementing the methods that have been called on it. (Miller, 2002
[34])

Using such an object is necessary because normal unit testing is difficult from outside. “Outside”
means that the code under development relies on a database, a web service or any other external
process or service. Thus, domain code is replaced with dummy implementations that emulate real
code. These Mock Objects are passed to the target domain code which they test from inside.

Why use them?

Avoid complex setup

Avoid external dependencies and having to write the code in a certain order
Reduce coupling

Keep tests fast (e.g. simulating a database)

Test object interactions

Promote interface based design

Ensure tests are durable

AN NN

Frameworks such as JMock or EasyMock exist to make the process of creating and using mock
objects easier.

| will use Mock Objects to write my sample application. EJB is a managed object—based technology;
i.e. all the objects are managed by the container. The EJB specification will be addressed in more

detail in the following part “Enterprise JavaBeans”.

This is just a short introduction to Mock Objects because | have not tried to use them yet. | will talk
about these Mock Objects in more detail when | describe my application.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 2. Literature Review

2.6 Enterprise JavaBeans

Enterprise JavaBeans (EJB) technology is the server-side component architecture for Java Platform,
Enterprise Edition (Java EE). EJB technology enables rapid and simplified development of distributed,
transactional, secure and portable applications based on Java technology (Sun Microsystems [35]).
But before introducing EJB in more detail, | briefly present Java EE and its multitiered architecture.

2.6.1 Java Enterprise Edition 5

The aim of the Java EE 5 platform is to provide developers with a powerful set of APIs while reducing
development time, reducing application complexity, and improving application performance (Sun
Microsystems [35]). Java EE provides services to developers to allow them to focus and concentrate
on the core area of developing software.

To develop my sample application using Java Standard Edition (Java SE) many hours of development
time would be consumed creating classes to handle security, transactions and concurrency control. |
avoid all that by simply implementing the Java EE model.

The Java EE platform uses a distributed multitiered application model for enterprise applications.
Application logic is divided into components according to function, and the various application
components that make up a Java EE application are installed on different machines depending on the
tier in the multitiered Java EE environment to which the application component belongs. (see Figure
2.6.1 below, an example of three-tiered application (Sun Microsystems [35]))

[Java EE Application 1 Java EE Application 2]
= [ES—
Client
- ClientTier [~ M;?::Ine
Application Dynamic
\ Client HTML Pages)
i -

A4
! E' JSP Pages I Web Tier
[E!‘Itﬂrp!’lSE EE\H% El"ﬂerprlse BEEIFIS Businnsﬁ Tiar

- - ' Database
EIS Tier |—
Database Server

Figure 2.6.1: JEE multitiered architecture

< | _Java EE
\ Server

Java EE multitiered applications are generally considered to be three-tiered applications because
they are distributed over three locations: client machines, the Java EE server machine, and the
database or legacy machines at the back end. (Sun Microsystems [35])

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 2. Literature Review

The EJB 3.0 specification defines the new simplified EJB APl (set of software calls and routines)
targeted at ease of development. It also includes the new Java Persistence API for the management
of persistence and object/relational mapping with Java EE and Java SE. The purpose of this latest
version is to improve the EJB architecture by reducing its complexity from the developer's point of
view.

In this subsection, | will first outline some of the limitations of the old version EJB 2.1. Next | will
briefly discuss testing EJBs, and finally, | will describe how EJB 3.0 addresses these difficulties by
describing some of the significant changes.

2.6.2 The limitations of EJB 2.1

Developing EJBs with EJB 2.1 has not been the easiest thing to do. The reasons are easy to find
(Ranganathan and Pareek, 2006 [18]):

To create a single EJB you need to create a multitude of XML deployment descriptors.

A set of three source files must be created.

Multiple callback methods must be implemented that usually are not used.

You have to throw and catch several types of unnecessary exceptions.

Yet another complaint is that the EJBs are very difficult to test outside the context of the
container since components like container-managed entity beans are abstract classes (read
below for more details).

v" Finally, EJB-QL (Enterprise JavaBeans Query Language) in its current form is limited in
functionality and difficult to use. These limitations force developers to use straight JDBC and
SQL, or to use other persistence frameworks (Spring, Hibernate).

ANANENE NN

2.6.3 The problem with unit testing EJBs 2.1

Recall that Unit tests run best when they run individually, in isolation, and quickly (see
“Characteristics of a good unit test” p. 16). A test case typically constructs the objects it is testing.
However, sometimes the object being tested is dependent on the behaviour of other objects. This is
the case with EJBs which are distributed components that are deployed and executed within an EJB
container. Because EJBs require several resources provided by the J2EE server to perform their
desired tasks, they cannot be easily tested outside the container. Here are a few more reasons why
such testing is difficult (Panda, 2004 [20]):

v EJBs are not pure Java classes and they have lifecycle methods.

v" EJB methods cannot be invoked directly and require JNDI (Java Naming and Directory
Interface) to look up and create instances.

v EJB requires services such as transactions and datasources for execution.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 2. Literature Review

2.6.4 Main useful improvements in EJB 3.0 for TDD

Metadata annotations

The configuration of XML deployment descriptors was a major difficulty in the path to simplifying
development of EJBs. Therefore one of the primary goals of the EJB 3.0 specification was to shield
the developer from having to work with XML files. This is accomplished by the use of metadata
annotations. Note that annotations are a feature introduced in Java EE 1.5 specification and later.
From the developer's point of view, annotations are modifiers like public/private and can be used in
classes, fields, or methods. Developers may still use XML if desired or can combine XML and
annotations. Indeed, some developers prefer XML or are more comfortable with it. In the next
chapters, | will give you some examples using annotations.

POJO programming model

Another big improvement is the use of POJO (Plain Old Java Object or Regular Java objects)
programming model. To write tests, programmers typically start by instantiating the object under
test. Then, they populate the object with any dependencies it requires, often using mock
implementations rather than the real thing. Finally, they invoke the functionality they want to test,
and perform assertions on the object’s and the collaborators’ states to verify correct behaviour.

In the case of managed objects used in EJB 2.1, objects are, by definition, managed by someone else,
the container. Programmers typically do not instantiate the object themselves directly; rather, they
ask the container to provide a reference to their managed object. Figure 2.6.4 (Lasse, 2007 [1])
illustrates this difference between managed and regular Java objects.

uses
Application code Regular Object

creates

Application code Managed Object

Figure 2.6.4: Managed Object/Regular Object distinction

For instance, with EJB 3.0, a stateless session bean is complete in itself. Interfaces are optional for
entity beans and required for session beans and message-driven beans. However, that does not
mean that you have to define an interface for your session bean or message-driven bean. If you do
not implement an interface, a bean interface will be generated for you. The type of generated
interface, either local or remote, is dependent on the annotation you used in the bean class.
(Ranganathan and Pareek, 2006 [18])

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 2. Literature Review

2.6.5 The Model View Controller architecture

2.6.5.1 General description

The Model View Controller (MVC) is a commonly used and powerful architecture for multitiered
applications. It is a way of breaking an application into three parts: the model, the view, and the
controller. It separates the code that handles business logic from the code that controls presentation
and user interfaces.

Model
The model is the information (data) that the application is manipulating and the rules used to
manipulate it.

View
The view implements the visual display of the model. It corresponds to elements of the user
interface such as text, checkbox, lists, buttons, etc.

Controller
The controller receives all the input events and manipulations from the user (e.g. mouse and
keyboard inputs) and translates them into possible changes on the model.

AN

shows uses by generating events

P ————— g ——————_———_—_{—_—_—_——_ —_—_—_—_—_—_—_—__— \
[MVC Architecture

i N %

. manipulates, changes
provides data

Figure 2.6.5.1: Model View Controller architecture

MVC separates the maintenance of the domain model (the Model), the presentation of the model
(the View), and the interpretation of user input (the Controller). As a result it is easier to modify the
visual appearance of the application or the underlying business rules without affecting the other.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 2. Literature Review

2.6.5.2 JavaServer Faces

This part will help you to understand the basic concepts of JavaServer Faces (JSF). JSF is based on the
MVC architecture mentioned previously and is part of the Java EE standard.

Model
The model is commonly represented by entity beans, and the client accesses these entities
through session beans.

View
The view in a Java EE application may consist of a large number of JavaServer Pages.

Controller

The controller in a Java EE application may be implemented by the JavaServer Faces servlet (or
called Faces Servlet), which acts as the front controller to the application. A front controller servlet is
an object that receives all requests and forwards the request for processing before sending the
response to the appropriate JSP. (see Figure 2.6.5.2 below)

From Wikipedia, here is a definition of JavaServer Faces:

“JSF is a Java-based Web application framework intended to simplify development of user interfaces
for Java EE applications [...] JSF uses a component-based approach. The state of user interface
components is saved when the client requests a new page and then is restored when the request is
returned. JSF uses JavaServer Pages (JSP) for its display technology.”

The following figure gives an overview of the different components in the Web Tier (also called
Presentation Tier). The Client Tier does not appear and | do not describe all components in each tier
because Figure 2.6.1 already mentioned it.

(r ‘\
Front Controller (Faces Servlet) Presentation / Web
Ul component | | Managed bean | | Validator / Convertor || Resource Bundle || Views (JSP) | Tier
JavaServer Faces
4 v N
Business Tier
N J
(\
\ Y, Integration Tier
JEE Server
N J
(\ . .
\ 4 > > Entreprise Information
System Tier
~ J

Figure 2.6.5.2: JSF in the Presentation Tier

I will describe JSF and its components in more detail in chapter 6 when describing the
implementation of my sample application (see p. 48).

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 2. Literature Review

2.7 Conclusion

TDD is a way of programming that encourages good design and is a disciplined process that helps
developers to avoid programming errors. TDD does this by writing small and automated tests, which
eventually build up a very effective alarm system for protecting the code from regression.

Starting a program by thinking about how to test it might seem unnatural at first, but it has a certain
satisfying quality to it. As soon as a new feature is implemented, a test is marked as a new success. It
is good for motivation and reminds you when you forget to implement a feature.

| have considered the fundamental issues of EJB testing:

- The problem of objects which are too tightly coupled

- The problem of managed objects which require the services provided by the container (the
container is too heavy to be included as part of the unit tests. Indeed, the fact that the unit
tests run quickly is very important).

Until version 3 of EJB, testability was very difficult for test-driven developers.

Agile programming and Test-driven development are emerging development techniques that are
generating enthusiasm in the software community. The old EJB specification was not suitable for
these techniques. Fortunately, the EJB 3.0 specification greatly changes the programming model.
Testing of components outside the application server or container is now possible, particularly with
the new dependency injection feature. (see p. 42)

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 3. Proposed Solution

3. Proposed Solution

The aim of this chapter is the practical application of TDD. Indeed, the only way to really understand
Test-driven development is to put it into practice. To reach this objective, | will create a sample
application using TTD method and unit testing tools.

3.1 Prototype application

The following application will be the basis for my unit tests. The objective is not to develop a
complete application ready for use but to learn and present a new development technique.

Thus | will only design and implement some of the main features with a simple interface. Thus, |
describe my application as a “prototype” or “sample” in this report.

Test-driven development completely changes the habits of programmers and it will be disconcerting
and difficult initially.

My application will enable a user to manage rental accommodations, i.e. it will enable a manager to
manage the accommodation operation of his customers. This application will assist managers to rent
out their apartments in particular residences, manage customers, provide useful business
information, etc.

The manager will have access to several functions (after successful login) such as:

Rent out a room to a single person, a couple or a family

Manage prices of the different kind of residences (depending on the number of rooms,
bathrooms, location, etc.)

Amend details of a tenant

List of tenants (all tenants, by residence, by floor, by apartment, etc.)
List of tenants who have not paid for the current month

List of regular tenants

Number of empty rooms in a residence

Money management (rent, employees wages)

Modify date of renovation of a residence

Calculate profits for the month, year...

etc.

ANERN

AN NI N N N N NN

For the moment, this is just a starting point... | will certainly add, remove or modify some functions in
the future. For instance, if | have time, | will implement a home page where tenants can logon and
consult their personal accounts.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 3. Proposed Solution

3.2 Required tools

This application will be developed with Enterprise JavaBeans 3.0 (EJB 3.0) with the IDE from Oracle:
JDeveloper version 10.1.3.3.0. | will use JavaServer Faces (JSF) as the server side user interface
component of my application. Recall that EJB is one of the several Java APls in the Java Platform,
Enterprise Edition. EJB is a server-side component that encapsulates the business logic of an
application.

Accordingly, the EJB specification details how an application server provides (Wikipedia [15]):

Persistence

Transaction processing

Concurrency control

Events using Java Message Service

Naming and directory services (JNDI)

Security

Deployment of software components in an application server
Remote procedure calls using RMI-IIOP

Exposing business methods as Web Services

ISR N N N NN

| have chosen Java as the programming language and EJB 3.0 as the server-side technology for my
prototype application because this version is more suitable for TDD than EJB2.x as mentioned
previously. TDD may be used with others languages and technologies. Moreover, as mentioned in the
Literature Review, | need more tools to practise TDD. Thus, to finalize this application, | will use a
variety of tools integrated with JDeveloper: JUnit, EJBUnit, EasyMock, and JMock. At this point in
time, | do not know yet which tools | will use. | will investigate various tools and choose the most
appropriate.

Lastly, | will need a database to save my data about the managers, customers and accommodations.
The database | will use is Oracle Database 10g Express Edition (Oracle Database XE). It is the free
database from Oracle. The free version has some limitations as expected from a free product but it
will be suitable for my application.

@ Oracle JDeveloper - Test Driven Development.jws : Pro EJB3 tests jpr
Fle Edit View GSearch Mavigate Run Debug Refactor Versioning Tools Window Help
Bo@g 0-0- 90 XEE /4 alda- - F-PEFSEEIDT
(Elapplications Navig... | PAconnections [2)|| Bl uthentificationTest java | §PBuidingBean.java | [BlBuldingTest.java | [E]ResidenceTest java (=)
B E @ ®)l e =F
& & Test Driven Development (=]
g = M\/”t:sise =iepmen 1 /4 We test one of the setter method of the Residence entity =
[0 tests foHpublic class ResidenceTest extends TestCase {
T = public void testValidResidenceName (] throws Exceprion {
=7 Application Sources Rosid i
B METAINE esidence res = new Residence(]:
res. setlane ("SETANTA") ;
[persistence = B! SETANTA" - i
6 tddmodd crtity assertEquals(, res.getllame());
- Building.java ¥ -
@ Manager java - - - - -
H =] public wvoid Invalidlength() throws Exception {
@ Residence java Teoia = et N
5 @ tdd.model stateless tes1 ence res = new Residence()
L8 AuthentficationBean. java ¥ {
: res. sechame ("DEIT 3tudent village in dundalk”):
“..¢8® BuildingBean. java N —
f2il("Residence names uust be twenty characters max”):
B0 rddtest tch {Illegalls E: t:
i [B] AuthentficationMackTest.ja , I cateh (Llleoalizqmentizoeption ol 4}
AuthentificationTest java ||
i = = public void testResidenceNameCase () throws Exception {
[B] ResidenceTest java -
] — ‘ "‘— Residence res = new Residencel();
— res. setllane ("DKIT $tudent village]:
Estructure | [BJRun Manager (=] assertEquals|("DKIT STUDENT VILLAGE", res.getName());
m i
-.[B] Processes i L
Saurce | Design | Beans | History [4] D
[Eltessages - Log =
Compiling. ..
C:'Program Files'Java'jdkl.&.0_02%jre'bin’java.exe -jar C:'Program Files'Java'jdewjZeebasel0133"jd|
[«[=] [»]
Messages | JUnlk Test Runner | [B>Running: Pro EB3 tests.jpr DE
£:|Mes documanks|Mes kextas|Travail [scolaire]|M1|Semester 1\Praject & Research Methodology|Test Driven Developmant|Tast Driven D Pro E1B3 relkdd|testiBulldingTest java | Editing

Figure 3.2: JDeveloper IDE running under Windows

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 3. Proposed Solution

3.3 Some preliminary tests

Initially, | created two entities: Residence and Manager using JDeveloper and wrote some basic tests
in relation to my application.

|:| Manager] |:| Residence
- Integer managericl - Integer residenceid

- String firstname - String name

- String lastname - String description

- String passwaord - Timestamp datelastrenovation

- List=Residence= residencelist - Manager manager

+ Manager () .| + Residence ()

+ Manager (String first, String last, Integer| 4 "+ Residence (Timestamp date, String des, String nam, Integer
+ String getFirstname () + Timestamp getDatelastrenovation ()

+ void getFirstname (String firstname) + void setDatelastrenovation (Timestamp datelastrenovation)
+ String getlastname () + String getDescription)

+ void setlastname (String lastname) + void setDescription (String description)

+ Integer gettanagerid () + String getMame ()

+ void setManagerid (Integer managerid) + void setMame (String names)

+ String getPassword () + Integer getResidenceid ()

+ void setPassword (3tring password) + void setResidenceid (Integer residenceid)

Figure 3.3-1: UML diagram sample

v' | test one of the setter and getter methods of the Residence entity: “setName” and
“getName”. setName sets the name of the residence in upper case if the name is no more
than twenty characters. Normally, setter/getter methods are too trivial to require a test but
it is be familiar with JUnit 3.8.

LISTING 3.3-1: TRIVIAL UNIT TEST
package tdd.test;

import junit.framework.TestCase;
import tdd.model.entity.Residence;

public class TestResidenceTest extends TestCase {

public void testValidResidenceName() throws Exception {
Residence res = new Residence();
res.setName("'OCEANIC PLACE™);
assertEquals(""'OCEATNIC PLACE', res.getName());

}

public void testResidenceNamelnvalidLength() throws Exception {
Residence res = new Residence();
try {
res_setName("DKIT Student village in Dundalk™);
fail(""Residence names must be twenty characters max'');
} catch (1llegalArgumentException e) {}

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 3. Proposed Solution

public void testResidenceNameCase() throws Exception {
Residence res = new Residence();
res.setName("'Holidays village');
assertEquals(""HOLIDAYS VILLAGE"™, res.getName());:

v" Then, | test the function “DurationRenovation” which return: how long the Residence has
been renovated?

LISTING 3.3-2: ANOTHER UNIT TEST
package tdd.test;

import java.sql.Timestamp;

import junit.framework.TestCase;

import tdd.model.entity.Residence;

import tdd.model.stateless_ResidenceBean;

public class TestResidenceBeanTest extends TestCase {

public void testDurationRenovation() throws Exception {
ResidenceBean bean = new ResidenceBean();
Residence res = new Residence();
res.setResidenceid(l);
res.setDatelastrenovation(
new Timestamp(System.currentTimeMillis(Q)
- ResidenceBean.MILLIS PER_YEAR * 5));
int DurationRenovation =
bean.getDurationRenovation(res.getResidenceid());
assertEquals(5, DurationRenovation);

Comments

The two tests above have performed some processing and returned a measurable result. Use an
automated unit testing tool, in this case JUnit, to write effective unit tests is essential for a TDD

programmer. Extending TestCase gives, among other things, a set of assertion methods such as
assertEquals().

There are some naming conventions, for example, all tests must be prefixed with the word “test”,
e.g. testDurationRenovation(). Indeed, all public void methods starting with test are considered as
test cases by the JUnit TestRunner. Note that this naming convention is used for JUnit 3.8 only. In
JUnit 4.0, an annotation is used instead. Test methods must not take parameters or return values.

JUnit has both text and GUI interfaces. This example uses the GUI interface to JUnit, with the results
shown on the next page.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 3. Proposed Solution

[E]aurit Test Runner - Log l (=)

A BT D Feue0 Goso ooty

4 BuildingTesk(tdd. test)
g testDurationRenovation

JUnik Test Runner l [Running: Pro EJBS tests.jpr EEIE]

Figure 3.3-2: Success is displayed by a “green bar”

JUnit Test Runner - Log l E]

AT E et Eroso ok

HY ResidenceTest(tdd, test) junit. Framework, ComparisonFailure; expected: <...... =but wasi <. T..»
b 48 bestValidR esidencellame at tdd.test.ResidenceTest testValidResidenceMame(ResidenceTest java: 13)
g testResidenceMamelnvalidlength at sun.reflect, MativeMethodAccessorImplinvoke0{Mative Mathod)
e @ testhesidencaMamaCase at sun.refleck. MativeMethodAccessorImpl.invole{MativeMethodAccessorImpl. java: 39)

at sun.reflect, DelegatingMethodAccessarImpl.invoke(DelegatingMethodAccessorImpl java: 25)

Messages Jnit: Test Runner lb Running: Pro EJB3 tests.jpr EEIE]

Figure 3.3-3: A failure in one of the tests is displayed by a “red bar”

When the red light comes up, the first thing to do is looking at the exception raised by JUnit.
Junit.framework.ComparisonFailure:

expected <...... > but was: <...T...>.

| take a glance at the code and immediately see that | have compared ""OCEANIC PLACE™ with
""OCEATNIC PLACE". | correct this test by simply removing the “T” and the tests now pass.

Running the tests is very fast because the Java embedded server and container is not needed. There
is no delay starting and stopping the server.

| used JUnit 3.8 as this is supported in JDeveloper 10.1.3.3.0. As | mentioned, the latest version 4.0
uses annotations but is not supported in this version of JDeveloper.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 4. Plan for Progression

4. Plan for Progression

Actually, this part is not essential to the report but it can be interesting to see the progression of such
project. This plan for progression was written at the end of the first semester and shows the main
steps | have to investigate during the second semester.

Starting date Description Allotted Time (weeks)

- To compare different unit testing tools and take
the most suitable (JUnit, EJB3Unit or Cactus).
- To compare two libraries for Mock Object
(EasyMock and JMock) and take the most suitable.
08/01/2008 To do that, | have to install these plugins, read 3
associated documentations and write tests.

- To continue with reading the “Test Driven TDD
and Acceptance TDD for Java Developers" book
from Manning.com and the “Black book” at the
DKIT library “Test first development with JUnit“,
ref SP1105 Student Project

Write some tests in relation to my application, more
29/01/2008 complex than in this first part and using Mock 2
Object, etc.

Think about the future functions of my application,
19/02/2008 write use cases and UML diagrams 1

26/02/2008 Deve.lop my prototype application sting the test 10
previously made and new ones. Using “test, code

and refactor” cycle...

29/04/2008 Finish writing this report 1

Total: 17 weeks

- During these 17 weeks, | will continuously write my report.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 5. Design

5. Design

In this chapter, | will describe the main steps to create my prototype application. As part of the code
design, | will present the concept of annotations which | briefly introduced in the literature review.
Annotations are fundamental when you use the latest version of Java Enterprise (1.5).

5.1 Functionalities of my sample application

Before writing the list of tests, | have to think about the future functions of my application. This is the
starting point of my application. Once the functionalities are defined, | will be able to start to test,
code and refactor the different parts (i.e. functionalities) of my application.

Login: the application’s access is limited to the managers

Manager management: control the manager’s access to the application
- Add a manager

- Modify a manager (his password)

- Delete a manager

Customer management

- Add a new customer

- View a customer: view customer details
- Delete a customer

Rent out an apartment: let an apartment located in a particular residence to a customer
Release an apartment: the released apartment is available for other customers

Statistics: some numbers which can help the manager
- Number of customer registered

- Number of tenants

- Tenant Rate

- Total number of apartments

- Total number of apartments available

- Occupation Rate

- Number of apartments available for each residence

Logout: facility to log out

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 5. Design

The manager can eincludes

access these ST Modify
. . ra
functions once log in 7 gincludes
== -
________ Manager management
i' > g § Pl Delete
I < gincludes
A
I . 7
| ~ 7
A .
| . waincludes
| Customer Management iy Add
| ——=—=—=—— == > 7
P! -
| T -7
| ~ T
! g zincludes
| Y
| e .
| : ~ View
gincludes
_______ > Rent out an apartment
Manager
: I Customer
R >

Release an apatment

L _ o Statistics

L e > Logout

Figure 5.1: Use case Diagram

As can be seen, | have seven main functionalities (including Login) which will require manipulation of
Managers, Customers, Apartments and Residences. Actually, each of these terms will “become” a
table in my database and an entity in the code.

5.2 Creating the list of tests

5.2.1 List of requirements

Before writing the initial list of tests, | need to think about some requirements. For my residences
management sample application, | have identified the following set of requirements:

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 5. Design

Login

- The system recognizes a manager when he is logged in to the system. To log in, the manager
has to give his username and his password and this information has to be valid (i.e. exists in
the database — Manager table)

- If a managers tries to connect but leaves out some piece of information (username, password
or both), the system attempt to ask the missing parameter.

- If the manager try to connect but the information filled out is false, the system has to inform
the manager that the login was unsuccessful.

Manager administration

Add

- Once logged in, a manager can add a new manager. The manager must enter some
information about the new manager (firstname, lastname, username and password).
Username and password are used for the log in.

- If amanager tries to add a manager who already exists in the database (i.e. same username),
the system will not create the new manager.

- If a manager tries to add a manager but does not give all the required information, the
system will not create the new manager.

Delete

- A manager can delete a manager to remove his access to the application. The manager
simply selects the manager in a list.

- If a manager tries to delete a previously deleted manager or who does not exist in the
database, the system will inform that the manager does not exist.

Modify

- A manager can only modify his password or the password of another manager. The manager
selects the manager he wants to modify (or himself), enters the old password and enters the
new password.

- If the manager tries to modify the password of a manager who does not exist, the system will
inform the manager.

- If the manager gives a wrong old password, the system will not consider the new password.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 5. Design

Customer administration

Add

- Once logged in, a manager can add a new customer. Thus, this customer will be able to rent
an apartment in one of the residences. The manager has to give some information about the
new customer (firstname, lastname, date of birth, average salary, email address and phone
number). Only the phone number is not required. When a customer is registered in the
database, a date of registration is automatically calculated and recorded.

- If a manager tries to add a customer but does not give all the required information, the
system will not create the new customer.

Delete

- A manager can delete a customer even if this customer is currently renting out an apartment.
Indeed, the apartment will be automatically released and be available for another customer.
The manager simply selects the customer in a list.

- If a manager tries to delete a customer he had deleted before or who does not exist in the
database, the system will inform that the customer does not exist.

View

- The manager selects a customer in a list to display the customer’s personal details (and also
his date of registration)

Let an apartment

- To let an apartment to a customer, the manager needs to provide three pieces of
information (the customer, the residence and the apartment). First, the manager selects a
customer in the list. Then, he chooses the residence the customer wants to live in and finally
chooses one of the available apartments.

- If one of the three steps fails (e.g. there is no apartment available in one residence), the
system will inform the manager and no rent will be registered (e.g. the system will ask the
manager to select another residence).

Release an apartment

- To release an apartment is very simple; the manager just needs to select one of the
customers.

- If the customer does not currently occupy an apartment, nothing will happen. No release is
needed but the system will inform the manager that the current customer is not renting.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 5. Design

Statistics

- The manager can access to a list of figures which can help him in his business (number of
customers registered, number of tenants, tenant rate, total number of apartments, total
number of apartments available, occupation rate, number of apartments available per

residence)

Logout

- A manager who is logged in to the application can quit the program simply by clicking on the
logout button. The logout function is not accessible by logged off users.

Because these requirements are very detailed, | can now write the tests. Tests are typically more
explicit and describe the behaviour of specific scenario rather than giving the description of that
behaviour.

5.2.2 List of tests

Here is one attempt at turning the residences management requirements into proper set of tests:

Login [Name of the method used: verifylLogin]

| insert the following record directly in the mock object and in the database — Manager table

v N4

[“Fabian”, “Piau”, “piauf”, “mypswd”] to have one basic registered manager.

- | log in with this manager with the valid information (“piauf”, “mypaswrd”). It results in a
successful login.

- | log in with this manager but | omit the username (null, “mypaswrd”). It results in login
failed. Omitting the username is represented by null in my test. It is not the empty string but
NULL, the special value in programming.

- llog in with this manager but | omit the password (“piauf”, null). It results in login failed.
- llog in with this manager but | do not fill out any field (null, null). It results in login failed.

- | log in with a manager who does not exist, with the invalid information (“unknown”,
“nopaswrd”). It results in login failed.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 5. Design

Manager administration

Add [addManager]

- | test to add the following manager [“Lucky”, “Luke”, “lukel”, “jumper”]. It results in a
successful insertion. To verify that this new manager is correctly inserted, | can try to log in to
the application with this new manager.

7

- |l test to add the following manager who already exists [“Fabian”, “Piau”, “piauf”, “mypswd”].
It results in a non-insertion of the manager.

Delete [deleteManager]

- | test to delete the following manager who exists in the mock object/database [“Fabian”,

VA4 v {4

“Piau”, “piauf”, “mypswd”]. The deletion is successful.

- | test to delete the following manager who does not exist in the mock object/database

V4 VN4 VN4

[“unknow”, “unknow”, “unknow”, “nopswd”]. The deletion is unsuccessful.
Modify [changePasswordManager]

- | test to modify the following manager who exists in the mock object/database [“Fabian”,
“Piau”, “piauf”, “mypswd”] and give the new password “newpswd” The modification is
successful.

- | test to delete the following manager who does not exist in the mock object/database

VN4 VN4 VN4

[“unknow”, “unknow”, “unknow”, “nopswd”]. The modification is unsuccessful.

Customer administration

| insert the following record directly in the mock object and in the database — Customer table
[“Sarah”, “Connor”, “08/03/1970”, “sarah.connor@skynet.com”, “1500 - 2000”, “0567891256"]
to have one basic registered customer.

Add [addCustomer]

- | test to add the following customer [“The”, “Daltons”, “01/05/1950”, “daltons@farwest.fr”,
“> 30007, “”]. It results in a successful insertion.

- | test to add the following manager who already exists [“Sarah”, “Connor”, “18/11/1981”,
“Sarah.connor@gmail.com”, “500 - 1000”, “”]. It results in a non-insertion of the customer.
The combination lastname/firstname has to be unique.

Delete [deleteCustomer]

- | test to delete the following customer [“Sarah”, “Connor”, “08/03/1970”,
“sarah.connor@skynet.com”, “1500 - 2000”, “0567891256”]. It results in a successful
deletion.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 5. Design

- | test to delete the following manager who does not exists [“unknown”, “unknown”,
“11/02/1980”, “unknown@unknown.fr”, “> 3000”, “”]. It results in a non-deletion of the
customer.

| do not turn all the requirements into tests (e.g. logout, statistics, see a customer, etc.) because they
are too simple and too basic to test.

Now, the list of tests is become something which is a degree more concrete, more executable than
the requirements. The next step is to make these tests pass one by one. At the end, these tests will
document my application, especially the code.

The entire list of tests is available in the appendices. (p. 60, 61 — UnitTest.java file)

5.3 Examples of annotations in EJB 3.0

Enterprise Beans in EJB 3.0 are easier to test than EJBs written with prior versions of the
specification. This is largely because in the 3.0 specification EJBs are simply POJOs annotated with
specific EJB 3.0 annotations. (Panda, 2004 [20])

The goal of EJB 3.0 is to simplify development by supporting the use of metadata annotations to
“generate several things” (such as interfaces), as well as to replace deployment descriptors.

From a developer’s point of view, annotations are modifiers - just like public - and can be used in
classes, fields, methods, parameters, local variables, constructors, enumerations and packages.

One major goal of J5EE is to simplify development using annotations, so as you might expect, it
includes its own set of annotations. Annotations are marked with @ as follows:

LISTING 5.3-1: A BASIC EXAMPLE OF ANNOTATION
@Author('Fabian Piau'™)

@Bean
public class MySessionBean

As | mentioned previously, in EJB 3.0, annotations replace deployment descriptors. Each attribute in
the deployment descriptor has default values so you do not have to specify these attributes unless
you want a value other than the default value. These values can be specified using annotations in the
bean class itself.

Before moving to the next example, let take a glance at Local and Remote interfaces. A Local
interface means that it is accessible only to clients within the same application server. It is not
possible to use a session bean with a local interface from a remote client, for example (Keith and
Schincariol, 2006 [31]). Thus, a second type of business interface for remote clients exists and is
called Remote interface.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 5. Design

LISTING 5.3-2: THE LOCAL ANNOTATION
package model.stateless;

import java.util_List;
import javax.ejb._lLocal;

@Local
public interface ApartmentServicelLocalEJB {
String getApartmentinformation(Long apartmentid);
Boolean giveCustomerApartment(Long customerid, Long apartmentid);

// etc.
b

| indicate, in this example, that the ApartmentServiceLocalEJB interface is the local interface for the
ApartmentServiceBean EJB only with the “@Local” annotation. This annotation uses the “ja -
vax.ejb.Local” class, so it needs to be imported.

Instead of using “@Local” it is possible to use the “@Remote” annotation to declare that the
interface should be used remotely.

The following example illustrates the specification of some value on annotations’ properties.
When an entity is associated with a Collection of other entities, it is most often in the form of a one-

to-many mapping. For example, a residence would normally have a number of apartments. Figure 5.3
shows the Residence and Apartment relationship.

Residence Apartment

name: String apartmentid: Long
address: String
description: String

Figure 5.3: Residence and Apartment relationship

LISTING 5.3-3: ANNOTATIONS IN RELATION WITH DATABASES
package model.entity;

import java.io.Serializable;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.ld;

import javax.persistence.NamedQueries;
import javax.persistence.NamedQuery;
import javax.persistence.OneToMany;

@Entity
@NamedQueries({
@NamedQuery(name = "Residence.findAll",

~

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 5. Design

query = "select o from Residence o order by o.name™),
@NamedQuery(name = "‘Residence.findNbTotalApartmentResidence",
query = "select count(a.apartmentid) from Apartment a
where a.residence.name = :residencename'),
@NamedQuery(name = '‘Residence.findNbUnavailableApartmentResidence",
query = "select count(a.apartmentid) from Apartment a,
Customer c where a.apartmentid = c.apartment.apartmentid
and a.residence.name = :residencename'),
@NamedQuery(name = "Residence.findAllApartmentResidence",
query = "select a from Apartment a where
a.residence.name = :residencename order by a.numb'),
@NamedQuery(name = "'Residence.findUnavailableApartmentResidence',
query = "select a from Apartment a, Customer c where
a.apartmentid= c.apartment._apartmentid and
a.residence.name = :residencename')

19

public class Residence implements Serializable {
private String address;
private String description;
@id
@Column(nullable = false)
private String name;
@OneToMany(mappedBy = "residence')
private List<Apartment> apartmentList;

// etc.

To turn the Residence class into an entity | first need to annotate the class with @Entity. This is
primarily just a marker annotation to indicate to the persistence engine that the class is an entity.

The second annotation that | need to add is @/d. This annotates the particular field or property that
holds the persistent identity of the entity (i.e. the primary key).

To indicate specific characteristics of the physical database column that the object model is less
concerned about, | can specify the @Column on the attribute. In my case, | want that the name of
the residence is never null.

Named queries are a powerful tool for organizing query definitions and improving application
performance. A named query is defined using the @NamedQuery annotation, which may be placed
on the class definition for any entity. The annotation defines the name of the query, as well as the
query text. If more than one named query is to be defined for a class, they must be placed inside of a
@NamedQueries annotation, which accepts an array of one or more @NamedQuery annotations.
(Keith and Schincariol, 2006 [31])

On the residence side of the relationship, | need to map the apartmentList list of Apartment entities
as a one-to-many association using the @0OneToMany annotation.

As part of the annotation | must add a mappedBy element to indicate that the owning side is the
Apartment and not the Residence. Because Residence is the inverse side of the relationship, it does
not have to supply the join column information. (Keith and Schincariol, 2006 [31])

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 6. Implementation

6. Implementation

This chapter presents the basics to implement TDD techniques and Unit testing. Java Enterprise 1.5
provides some features such as dependency injection which are useful to implement Unit testing in
your JavaBeans Application. As | mentioned previously, this chapter also presents in more detail
JavaServer Faces (JSF), the server side user interface component | have used to implement my
application.

6.1 Unit testing vs. Integration testing

6.1.1 Two scenarios

There are two common scenarios where EJB unit testing may be performed: during development and
during integration.

By “development”, | mean at the time of coding. The developer may want to run the unit test at any
time after some code changes. This testing is normally performed on one or a few beans at a time.

By “integration”, | mean at the time beans from different developers are integrated together and
integration test suites are run, since beans may behave differently when assembled together. This is
normally adopted by XP teams from the idea of continuous integration. Integration tests may be run
every day or even every hour.

Generally, there is confusion with unit testing and integration testing.

6.1.2 Unit testing

Unit tests are written by developers and focus on isolated components of an application. Unit testing
is used to validate that individual units of source code are working properly. Depending on your
approach, this may be a single method or a class. In other words, Unit testing is testing code in
isolation. The only key defining element is that the unit test is not coupled to any server resources
(these are typically mocked) and execute very quickly. It must be possible to execute an entire suite
of unit tests from within an IDE and get the results in a matter of seconds.

6.1.3 Integration testing

Individual software modules are combined and tested as a group. Integration tests are also written
by developers and focus on use cases within an application. They are still decoupled from the
application server, but the difference between a unit test and an integration test is that the
integration test makes full use of external resources such as a database. In effect, an integration test
takes a component from an application and runs in isolation as if it were still inside the application
server. (Keith and Schincariol, 2006 [31])

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 6. Implementation

Running the test locally makes it much faster than a test hosted in an application server but still
slower than a unit test. Integration tests are also automated and often run at least daily to ensure
that there are no regressions introduced by developers.

Integration testing is an extension of unit testing that takes components of a Java EE application and
executes them outside of an application server. (Keith and Schincariol, 2006 [31])

6.1.4 Summary

The big difference between the two types of testing is that unit testing focuses on the internal logic
of one procedure, and integration testing tries to identify problems that might happen when one
procedure (the parent or “outer” procedure) calls another procedure (the child or “inner”
procedure). Another important difference is that integration testing usually follows unit testing. After
ridding two or more procedures of any internal defects, you can integration-test the procedures by
checking for defects in the outer procedure's call statements and in any data or error messages the
inner procedure returns to the outer procedure. (Sawyer, 2004 [28])

6.2 Dependency Injection and Unit Testing

6.2.1 What is Dependency Injection?

The next major change associated with EJB 3.0 is actually a change in the J5EE specification:
dependency injection. The process of automatically looking up a resource and setting it into the class
is called dependency injection because the server is said to inject the resolved dependency into the
class. The J5EE specification requires that J2EE application clients, enterprise beans, and web
components have access to a JNDI (Java Naming and Directory Interface) naming environment. The
naming environment can be accessed either through explicit JNDI lookup calls or through
annotations which specify that the container injects the dependency automatically. What this means
is that you can now declare a dependency on an EJB or other container-managed resources through
a simple annotation such as:

LISTING 6.2.1: A DEPENDENCY INJECTION USING FIELD INJECTION

@Stateless

public class ApartmentServiceBean implements ApartmentServiceEJB {
@EJB
BedroomService bedroom;
// etc.

The container will inject an implementation of the Bedroom interface into the Apartment and the
Apartment can use the object as if were a simple POJO.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 6. Implementation

6.2.2 Two kinds of Dependency Injection

Field Injection

The first form of dependency injection is called field injection. Injecting a dependency into a field
means that after the server looks up the dependency in the environment naming context, it assigns
the result directly into the annotated field of the class. The piece of code above is an example of field
injection.

Field injection is certainly the easiest to implement. The only thing to consider with field injection is
that if you are planning on unit testing, then you need either to add a setter method or to make the
field accessible to your unit tests in order to manually satisfy the dependency.

Setter Injection

The second form of dependency injection is called setter injection and involves annotating a setter
method instead of a class field. When the server resolves the reference, it will invoke the annotated
setter method with the result of the lookup.

LISTING 6.2.2: A DEPENDENCY INJECTION USING SETTER INJECTION

@Stateless
public class ApartmentServiceBean implements ApartmentServiceEJB {
private BedroomService bedroom;
@EJB
public void setBedroomService(BedroomService bedroom) {
this.bedroom = bedroom;

}

// etc.

This style of injection allows for private fields yet also works well with unit testing. Each test can
simply instantiate the bean class and manually perform the dependency injection by invoking the
setter method, usually by providing an implementation of the required resource that is tailored to
the test.

6.2.3 Why Dependency Injection can ease unit tests

The dependency injection approach offers more flexibility because it becomes easier to create
alternative implementations of a given service type. This is especially useful in unit testing, because it
is easy to test particular units of code by injecting a mock implementation of a service (e.g. use a
dummy mock class to act like the real one) into the object being tested; thus, removing the need to
test the dependent code. (Wikipedia [15])

Without any JNDI API code in the class that has dependencies on the application server runtime
environment, the bean class may be instantiated directly in a unit test. The developer can then
manually supply the required dependencies and test the functionality of the class in question instead
of worrying about how to work around the JNDI APIs.

To summarize, dependency injection aims to solve a particular problem in designing and constructing
data structures dependent on other pieces of code, in a way that minimizes the coupling between
them.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 6. Implementation

6.3 Testing the functionality of the application

6.3.1 EJBs overview
In the following sections, | provide a brief description of two types of EJBs.

Entity bean

An entity bean (or entity) represents an object in a persistent storage mechanism. In my application,
these objects are customers, managers, apartments, and residences. Typically, each entity bean has
an underlying table in a relational database, and each instance of the bean corresponds to a row in
that table. As database tables have relationships (foreign keys), entities also have relationships to
other entities. | have four entities representing four tables in my database. | have used the same
names for my entities and my tables, although it is not necessary to do so. The relationships between
the four entities are shown on page 63 (“Full UML diagram” in the appendices).

In the most general sense, entities are business domain objects that have specific meaning to the
application that accesses them (Keith and Schincariol, 2006 [31]).

Session bean

Session beans are a component technology designed to encapsulate business services. The
operations supported by the service are defined using a regular Java interface, referred to as the
business interface of the session bean, that clients use to interact with the bean (Keith and
Schincariol, 2006 [31]). There are two types of session bean, stateless and stateful.

Stateless

A stateless session bean is a distributed object that does not have an associated conversational
state, thus allowing concurrent access to the bean. The contents of instance variables are not
guaranteed to be preserved across method calls (Wikipedia [15]). | have created stateless bean for
my application.

Stateful
Stateful session beans are distributed objects having a conversational state. The state could be
persisted, but access to the bean is limited to only one client. (Wikipedia [15])

Actually, a third type of EJBs exists: Message-driven beans. | mention them here but | did not use them.

6.3.2 Functionalities in the session beans

What | need to test are my stateless session beans. Indeed, all functionalities are in the session
beans. To organize my session beans, | have brought together the functionalities by entity. In other
words, one session bean contains all the functionalities to manage a customer, another all the
functionalities to manage an apartment, etc. For instance, all methods and code referring to the login
are in the manager session bean because only a manager can log into the system.

Following this session beans “organization” and having four entities, | have created four stateless

session beans: ResidenceServiceBean, ApartmentServiceBean, CustomerServiceBean and
ManagerServiceBean.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 6. Implementation

6.3.3 Testing session beans

My session beans need access to the entities in order to function properly. However, when | want to
test a session bean, | do not want to test the entities. Indeed, entities require the services of the
database server and involve some dependencies. Recall that a good test in TDD has to run fast and
has to run in isolation.

The solution is to use Mock Objects. Instead of using a library such as EasyMock, | created my own
mock objects. | created one mock object for each session bean: ResidenceServiceBeanMock,
ApartmentServiceBeanMock, CustomerServiceBeanMock and ManagerServiceBeanMock. In concrete
terms, these mock objects will simulate the entities behaviour in order to avoid using the entities.

LISTING 6.3.3-1: REPLACEMENT OF ENTITY BY A SIMPLE LIST IN THE MOCK OBJECT

public class ManagerServiceBeanMock implements ManagerServiceRemoteEJB {
private List<Manager> listManag = new ArraylList<Manager>();

public ManagerServiceBeanMock() {
listManag.add(new Manager(*'Piau’, "Fabian', "piauf'", '181186'));
listManag.add(new Manager('Bond", "James', "bondj', "007'"));

}
// etc.

}

As can be seen, my mock object simulates the Manager entity with a simple list of Manager Objects.
| can add, remove, and modify managers in my test without using any entities.

Each time | create this mock object, | insert two managers in the list (constructor method). This
simulates the two same rows | normally have in the “Manager” table in my database.

Once the tests run successfully against the mock object (green light with JUnit), | run the tests again
but against the database. To switch between Mock Object and database, | simply use the setUp()
method of JUnit. This particular method is always called in first by the JUnit test runner when the test
case is executed.

LISTING 6.3.3-2: RUN THE TESTS AGAINST THE MOCK OBJECTS

@0verride protected void setUp() {
ManBean = new ManagerServiceBeanMock();
CustBean = new CustomerServiceBeanMock();
AptBean = new ApartmentServiceBeanMock();
//ManBean = createManagerBean();
//CustBean = createCustomerBean();
//AptBean = createApartmentBean();

LISTING 6.3.3-3: RUN THE TESTS AGAINST THE DATABASE

@Override protected void setUp() {
//ManBean = new ManagerServiceBeanMock();
//CustBean = new CustomerServiceBeanMock();
//AptBean = new ApartmentServiceBeanMock();
ManBean = createManagerBean();
CustBean = createCustomerBean();
AptBean = createApartmentBean();

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 6. Implementation

The entire code for the ManagerServiceBeanMock mock object is available in the appendices (p. 61-
62)

It is possible to test entity beans and | did so as an introduction to JUnit (see p. 28) but they are too
trivial to be tested. Moreover, entity beans are automatically created by JDeveloper from the tables
within the database. Thus, an error in your entity beans certainly means an error in the definition of
your tables.

6.4 Order of tests with JUnit

The following is an extract from my set of tests:

LISTING 6.4-1: MANAGER UNIT TEST SAMPLE

public void testAddManager() {
assertNul I (ManBean.verifyLogin(*"lukel™, "jumper'));
// test Add Manager
assertTrue(ManBean.addManager (*'Lucky', "Luke', "lukel', "jumper'));
Manager m = ManBean.verifyLogin("lukel', "jumper');
assertEquals (m.getUsername(), "lukel™);
assertEquals (n.getPassword(), "jumper');
// test Add Same Manager
assertNotNull(ManBean.verifyLogin("lukel™, "jumper'));
assertFalse(ManBean.addManager (""Lucky™, "Luke™, "lukel™, *jumper'));

}

public void testDeleteManager() {
// test Delete Manager
assertTrue(ManBean.deleteManager("'Lucky™, *Luke™, *"lukel'™));
assertNul I (ManBean.verifyLogin('lukel™, "jumper'™));
// test Delete Same Manager
assertFalse(ManBean.deleteManager(“'Lucky", "Luke™, "lukel'™));
// test Delete non-exist Manager
assertFalse(ManBean.deleteManager (*'Lucky", "Luc™, "lukel'™));

At first sight, there is no problem but an issue came to light when | ran these tests with JUnit. The
second test (deletion) fails without obvious explanation.

| have a situation where | would like to use the results of one test in another test. The first test

“testAddManager” checks if | can create a new instance of Manager in the database; the second test
“testDeleteManager” attempts to delete the instance created in the first test.

My first attempt was to rearrange the two tests and merge them into one unique test. This is the
new test | obtained after merging:

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 6. Implementation

LISTING 6.4-2: MERGING INTO A UNIQUE UNIT TEST

public void testAdministrationManager() {
assertNull(ManBean.verifyLogin("lukel™, "jumper'™));
// test Add Manager
assertTrue(ManBean.addManager (*'Lucky', "Luke'™, "lukel™, "jumper'));
Manager m = ManBean.verifyLogin('lukel™, "jumper');
assertEquals (n.getUsername(), "lukel'™);
assertEquals (n.getPassword(), "‘jumper'™);
// test Add Same Manager
assertNotNull (ManBean.verifyLogin("'lukel™, "jumper'));
assertFalse(ManBean.addManager (*'Lucky", "Luke"™, "lukel', "jumper'));

// test Delete Manager
assertTrue(ManBean.deleteManager("'Lucky", "Luke™"™, "lukel'™));
assertNul I (ManBean.verifyLogin('lukel™, "jumper'™));

// test Delete Same Manager
assertFalse(ManBean.deleteManager (*'Lucky", "Luke™, "lukel'™));
// test Delete non-exist Manager
assertFalse(ManBean.deleteManager(*'Lucky", "Luc", "lukel'™));

Without explanation, all the tests now pass! | can see the green bar instead of the red one. After
some research, | found a good explanation.

There is no fixed order in which the JUnit framework may execute the test methods during a run of
the test runner. Indeed, JUnit does not specify the order in which the tests are run. The reason is that
tests are supposed to be independent of each other.

What | have done (merging tests) is one solution but there is an alternative which control the order
of the tests: use a static suite() method like this one to ensure the ordering:

LISTING 6.4-3: A SUITE TO CONTROL THE ORDER OF TEST

public static Test suite() {
suite.addTest(new SomeTestCase (‘'testDoThisFirst';));
suite.addTest(new SomeTestCase (‘‘testDoThisSecond';));
return suite;

}

There is no guarantee in the JUnit APl documentation as to the order in which your tests will be
called, because JUnit employs a Vector to store tests. However, you can expect the above tests to be
executed in the order they were added to the test suite. (Schneider, 2001 [29])

What | tried to do is very common among programmers. There are many things | can only test after |
have done a lot of things to set up an environment where things make sense. But | have to do it all in
one test case, making assertions along the way to make sure that everything is as it should be before
| go to the next step. It is preferable that each test cover as little functionality as possible, but that is
not always possible. It is also preferable to avoid modifying the database in the tests, but sometimes
it is unavoidable.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 6. Implementation

6.5 JavaServer Faces

The JSF user interface (Ul) component model includes (Goyal and Varma, 2004 [38]):

v" Aset of Ul components
v" Managed Beans
v" Page navigation support

To explain how it works, | will base most of my examples on the login page.

6.5.1 Ul Components

JSF lets you create user interfaces from a set of standard, reusable server-side components and
provides a set of JSP tags to access those components. (Command, Form, Output, Input, Panel,
SelectBoolean, SelectMany, SelectOne, etc.)

LISTING 6.5.1: JSP TAGS TO ACCESS YOUR Ul COMPONENTS

<h:outputLabel value="Welcome #{loginBean.firstname}"
#{loginBean. lastname}" />

<h:inputText required="true" maxlength="10"
value="#{loginBean.username}" id=""username'/>

<h:inputSecret maxlength="10" required=""true"
value="#{loginBean.password}" id="password"/>

<h:commandButton value="Connect" action="#{loginBean.verifyLogin}"
styleClass="bouton_submit"™ />

<h:selectOneMenu value="#{modifyManBean.managerid}'>
<f:selectltems value="#{modifyManBean.list_manager}"/>
</h:selectOneMenu>

The hzinputText, h:inputSecret and h:commandButton correspond to the text field,
password field and the submit button of the login page.

The input fields are linked to object properties. For example, the attribute
value="#{loginBean.username}" tells the JSF implementation to link the text field with
the username property of a loginBean object (Geary and Horstmann, 2007 [39]). In the
loginBean class, the setUsername(), getUsername(), setPassword(), getPassword() methods must be
implemented.

6.5.2 Page navigation

faces-config.xml is a key configuration file type within a JavaServer Faces software implementation. It
lists the navigation rules. A navigation rule tells the JSF implementation which page to send back to
the browser after a form has been submitted.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 6. Implementation

LISTING 6.5.2: NAVIGATION MODEL

<navigation-rule>

<from-view-id>/login. jsp</from-view-id>

<navigation-case>
<from-outcome>success</from-outcome>
<to-view-id>/welcome. jsp</to-view-id>

</navigation-case>

<navigation-case>
<from-outcome>fai lure</from-outcome>
<to-view-id>/login_failure.jsp</to-view-id>

</navigation-case>
- SUCCESS E
i!

</navigation-rule>
welcome.jsp

Nogin.jsp

&

Nogin_failure.jsp

- failure

Figure 6.5.2: Navigation diagram generated using JDeveloper

If the login fails, the user is redirected on the login_failure web page, if the login is successful, the
user is redirected on the welcome web page.

6.5.3 Managed bean

A bean is needed to manage the user data (username and password). It is this bean (in fact,
verifyLogin() method of this bean) which will return “success” or “failure” depending on the
username and password correctness. The beans resources are also listed in faces-config.xml,
generally at the end (i.e. after the navigation rules).

LISTING 6.5.3: THE LOGIN MANAGED BEAN REFERENCED IN THE FACE-CONFIG.XML FILE

<managed-bean>
<managed-bean-name>loginBean</managed-bean-name>
<managed-bean-class>view.beans.LoginBean</managed-bean-class>
<managed-bean-scope>application</managed-bean-scope>
</managed-bean>

Note that JDeveloper automatically modifies the faces-config.xml file. You simply need to draw a
diagram as Figure 6.4.2 and turn your bean into a managed bean with some clicks with a wizard.
Personally, | did not use the diagram drawing function, as | preferred to write my navigation rules by
hand but | used the managed bean wizard which is very practical.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 7. Conclusion

7. Conclusion

This final chapter reviews the aims and objectives set out at the beginning of this report. In addition,
the main problems encountered and the learning outcomes will be outlined. You will also find my
opinion, the advantages, issues, etc. which came up when investigating TDD area and using it for the
development of my application.

7.1 Review of aims and objectives

The aims of the project were to carry out an in-depth study of TDD applied to EJB 3.0, to develop a
sample application using TDD, and to provide an analysis of this method. They were generally met by
this report and my application prototype.

| consider that the application was too “data-centric” without sufficient complex logic to fully test
TDD. Indeed, | have mentioned the automatic libraries for creating mock objects (EJBUnit, EasyMock
and so on) in this report but never use them during the development of my application. Moreover,
my application uses some SQL queries, and it is very simple to verify a query just by typing it in the
Oracle SQL “executer” and see if the result is expected.

But do not conclude that the development of my application was useless and not suitable for Unit
Testing. On the contrary, this application was a very good introduction to TDD. With it, | have created
my own mock objects to mock entities, | have tested stateless session beans, etc. Now, | know
exactly what TDD is and can use it in my next projects.

7.2 Problems encountered

During the development, | had some difficulties with the “rent out an apartment” function because
of the non-destruction of the stateless session bean.

When a manager selects the “rent out an apartment” function with the main menu, the application
loads in one field of the bean “RentApartbean”, i.e. the list of customers who have yet to rent an
apartment. When the manager has selected a customer and gives him an apartment, one expects
that this customer does not appear in the list anymore. But this can happen only if the application
deletes and rebuilds the list, in other words, destroys the bean to create a new one with a new list.
This is a problem as the “rent out an apartment” is performed in three steps and the manager can
leave by clicking on another function in the menu.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 7. Conclusion

|”

| solved this problem by adding a “cancel” button on each page of each step (see below screenshot of
step 2). This button calls the cancel() method which will destroy the session. Thus the java manager
will be able to destroy the session bean. If the manager decides to give up before confirming the
rental, the only choice he has is to use this button. Indeed, all the functions in the menu have been
deactivated.

e

elcome Fabian Piau

ne Page

nagers management
tomers management Select a residence in the list :

it out an apartment Buckingham Palace =
Ease an apartment

listics Continue Cancel
%—J
out “Cancel button” on each page

Figure 7.2: The “cancel” button

Another problem was the systems resources needed by Oracle JDeveloper together with my
database management system (Oracle Database 10g Express Edition). This problem was not a real
nuisance but a waste of time. Every time | want to launch the sample application or run my test
against the database, | have to wait for JDeveloper and the embedded server to start. In addition, |
need to restart the embedded server every time | modify the code of a bean (even for a little
modification).

On my laptop, | have 1 gigabyte of ram with a simple core processor. At least 90% of its resources
were used even with a large virtual memory on hard drive.

| would recommend using a strong computer with at least 2 gigabytes of ram in order to work
comfortably on this kind of development.

Actually, this resources problem is a good argument for using TDD because you do not need to start
your database on top of JDeveloper when you want to test your code.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 7. Conclusion

7.3 Learning outcomes

Learning a new method of development was the main part of this project but throughout it, | also
gained knowledge and experience in the latest Java Enterprise Edition platform, JavaBeans, and also
JavaServer Faces which are technologies | never saw before and are currently trendy in IT companies.
From a personal perspective, acquiring this experience will considerably help me to build my
professional plan and open up wider career horizons to me.

By writing the literature review, | also improved my skills in information retrieval (processing a large
amount of information and differentiating between the important and the trivial, etc.) and obviously
my English writing skills.

| learned to use new tools such as JUnit, Oracle XE, and JDeveloper. Before this project, | was more
familiar with Eclipse. Learning a new IDE is not so difficult, as the functionality and user interface are
similar.

The idea of keeping an up to date blog (once a week) as my project progressed was valuable. In the
beginning | thought it was restrictive and a waste of time but in the end, it was the best and easiest
way to follow my progress. | will use it again for my future projects.

7.4 Project conclusion

7.4.1 Some TDD technicalities

The following are some subtleties about TDD which | have encountered myself and which often crop
up on forums about TDD.

Tests that depend on some data pre-conditions (such as certain records existing in the database) are
brittle and will break when the data changes. Tests should ideally set up all the pre-conditions for a
test (Adzic, 2008 [37]). If | delete some rows from my “Manager” table while testing my management
functionality, some of my tests will inevitably fail.

If tests depend on other tests to set up the context, then the order of test execution becomes
important and you can no longer run individual tests in isolation. This can lead to big problems,
especially if the test runner does not guarantee the order of tests (this is the case with JUnit). Again,
the tests should ideally set up all the pre-conditions for a test and individual tests should be
independent (Adzic, 2008 [37]). | have myself come up against this problem. It is hard to write good
tests which correctly run in isolation.

Some programmers have a tendency to “over-mock” their application in order to test it. This result in
very complex code and it is easy to become confused, resulting in reduced productivity. | do not
suggest that Mock Objects are useless, just that they are a tool which has to be used where
appropriate, not a pattern to base the foundations of your entire implementation on.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 7. Conclusion

Consider a convincing quotation from a TDD user. “Also, | have gone in the trap of thinking | have to
test everything. And because | want every test to be isolated, that means a lot of mocking. What |
discovered was that my tests dig too deep into the implementation and no longer tests just external
behaviour. That means my tests are coupled to the implementation, which is not how it should be.”

7.4.2 What others think about TDD

The table below (Ritzkopf, 2006 [36]) shows the results of different empirical studies analyzing the
code quality and the programmer productivity using TDD.

TDD does neither improve quality nor productivity, but improves

Mdiller & Hagner (2002) program understanding.

Maximilien & Williams (2003) TDD improves quality, but there is hardly any difference in productivity.

George & Williams (2003) While TDD improves quality, it does not produce better productivity.

There is no difference in productivity, but TDD encourages developers to

Geras, Smith & Miller (2004) .
write more test cases and to execute them more frequently.

TDD encourages programmers to write more tests and a higher number
Erdogmus, Morisio & of tests leads to higher productivity. TDD does not improve quality on
Torchiano (2005) average, but with the higher number of tests it increases the minimum
achievable quality.

Experimental weaknesses and contextual limitations cannot be ignored when viewing the outcome
of these studies. The results are quite contradictory. But, generally these studies agree that TDD
improves the understanding of the code but does not improve the productivity. At this point, these
empirical studies do not deliver a complete evaluation of TDD. Moreover, what remains unclear is
how the effectiveness of TDD depends on individual skill level and how long it takes to master this
technique. These studies should encourage researchers to extend experiments for further
investigations.

7.4.3 What | think about TDD

In my view, TDD requires at least the following skills: discipline, mastery of a unit testing framework,
an ability to recognize duplication and to know when and where to refactor. All these skills take time
to develop.

It takes time also to get used to this development method. Initially, this form of development is
slower, and complex (introducing new concepts, new tools, mock objects, etc.) and changes the
habits of programmers. Having used TDD for six months and with an understanding of its underlying
concepts, | will still have difficulty fully integrating TDD into my future developments. Indeed, when
you are used to traditional programming techniques for years (writing code followed by testing it), it
is easy to fall back on your old habits.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 7. Conclusion

But, the use of TDD for developing applications has many advantages. In my opinion despite the
studies’ results above, it has a positive impact on programmer productivity, code quality and
documentation. It is much more interesting than writing tests after writing the code. TDD forces you
to define your interface before you start coding, thus you do not spend time on unimportant
features (it is very common among developers to add some functions “just in case”). When you write
your code using TDD, each line of your code has been tested. Thus, code coverage is higher and the
code quality too.

As far as | am concerned, it not possible to say to another developer “TDD works very well, | advise
you to use it!” after working on this project for only six months. | think | need to use TDD for years on
a variety of projects.

Anyway, | think it is important to understand Test Driven Development first and how it works to
benefit and appreciate it. No methodology is perfect and it depends on people and how they use it.
Just because a methodology when applied correctly is appropriate and should result in success, it
does not mean that it will be applied correctly and appropriately. Adopting TDD can be very
beneficial but it can also be a complete disaster when people get things wrong, especially when
lacking experience, motivation or understanding.

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 8. References

8. References

[1] Lasse, K. (2007) Test Driven, Practical TDD and Acceptance TDD for Java developers, Greenwich:
Manning Publications

[2] Chaplin, D. (2001) Test First Programming, TechZone
[3] Smith, N. (2002) Write Unit Tests, Visual Studio Magazine
[4] Marick, B. (2000) Testing for Programmers, testing.com

[5] Mackinnon, T. & Freeman S. & Craig P. (2000) Endo-Testing: Unit Testing with Mock Objects,
conference, “eXtreme Programming and Flexible Processes in Software Engineering - XP2000”

[6] Corbett, N. (??) Test-driven development, a Portable Methodology, available from:
<http://www.developer.com/design/article.php/10925_3622546_1> [accessed 28 Nov 2007]

[7] Miller, K-W. (2004) Test-driven development on the cheap: text files and explicit scaffolding,
University of lllinois at Springfield, Dept. of Computer Science

[8] Olan, M. (2003) Unit testing: test early, test often, Computer Science and Information Systems,
Richard Stockton College

[9] Hammell, T. & Gold, R. & Snyder , T. (2004) Getting started with Test-driven development,
JavaWorld.com

[10] Ambler, S. (2003) Agile Database Techniques: Effective Strategies for the Agile Software
Developer, USA: New York

[11] Fowler, M (2006) Continuous Integration, Martin Fowler.com
[12] Cogley, J. (2003) Test-driven development with NUnit and C#, <http://www.thycotic.com>

[13] Gorman, J. (2005) Agile Java Development. Test-driven development using JUnit & Eclipse, Parlez
UML

[14] Palermo, J. (2006) Guidelines for Test-driven development, Vlisual Studio 2005 Technical Articles

[15] Definition of “Test-driven development”, “EJB”, “Dependency injection” and “Reflection”,
“Session beans”, Wikipedia, online encyclopaedia

[16] Hohpe, G. & Istvanick W. & Craig P. (2002) Test-driven development in Enterprise Integration
Project, ThoughtWorks

[17] Jeffries, R. (2001) What is Extreme Programming?, XProgramming.com, XP Magazine

[18] Ranganathan, V. & Pareek, A. (2006) An Introduction to the Enterprise JavaBeans 3.0 (EJB 3)
Specification, Dev2Dev article

[19] Unknown (2008) Software Testing and Quality Assurance Glossary, Applied Testing and
Technology, Inc., www.aptest.com [accessed April, 2" 2008]

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 8. References

[20] Panda, D. (2004) Simplifying EJB development with EJB 3.0, The Server side, a Java community

[21] Nygard, M-T. & Karsjens, T. (2000) Test infect your Enterprise JavaBeans, Learn how to test your
J2EE components live and in the wild, JavaWorld.com

[22] Coffin, R. (2005) Getting Started with EJB 3.0 and Enterprise Bean Components, Valtech
Technologies: Texas

[23] Verré, C. (2007) Dependency Injection and Unit Testing, JavaRanch Journal, Volume 6, Number 1,
Managing Editor: Dittmer, U.

[24] Provost, P. (2003) Test-driven development in .NET, available from:
<http://www.codeproject.com/dotnet/tdd_in_dotnet.asp> [acceded November, 28" 2007]

[25] Fowler, M. (2004) Inversion of Control Containers and the Dependency Injection pattern, Martin
Fowler.com

[26] Ben, B. (2008) Defining terminology, Unit Testing vs. Integration Testing vs. System Testing,
Quickduck

[27] Palermo, J. (2005) Simple dependency injection to get you started with unit testing, Software
management and CTO, Headspring Systems

[28] Sawyer, D. (2004) Integration Testing, article in the edition October 2004 of SQL Server Magazine

[29] Schneider, A. (2001) JUnit best practices, Techniques for building resilient, relocatable,
multithreaded JUnit tests, JavaWorld.com

[30] Ela, J. (2007) Order of test, Answer posted in a thread of “house of fusion” website in the
“CFUnit” category, reply to Harris, D.

[31] Keith, M. & Schincariol, M. (2006) Pro EJB 3: Java Persistence API, United States of America:
Apress

[32] Stott, W. & Newkirk, J. (2004) Improve the Design and Flexibility of Your Project with Extreme
Programming Techniques, Microsoft MSDN Magazine April

[33] Leponiemi, J. (2003), Model-View-Controller, PGUI
[34] Miller, C. (2002) The Desktop Fishbowl, Six Rules of Unit Testing, Charles blogs

[35] Enterprise JavaBeans Technology, Java Platform, Enterprise Edition (Java EE), The Java EE 5
tutorial, Sun Microsystems (Official website)

[36] Ritzkopf, P. (2006) Effects of Test Driven Development, an Evaluation of Empirical Studies
Informatik XI, Embedded Software Group, RWTH Aachen

[37] Adzic, G. (2008) When TDD goes bad, available from:
<http://gojko.net/2008/02/25/when-tdd-goes-bad> [accessed 19 April 2008]

[38] Goyal, D. & Varma, V. (2004) Introduction to JavaServer Faces (JSF) Sun Microsystems official
presentation

[39] Geary, D. & Horstmann, C. (2007) Core JavaServer Faces (Second Edition), Prentice Hall

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 9. Appendices

9. Appendices

9.1 Sample application screenshots

Here are some screenshots of my final sample application.

axs ALL CODE IS GUILTY , "
:I \ UNTIL PROVEN INNOCENT 1 €/E-IMIVEN Weveiopmen

S P

| Enter your personal informations

Possword []

Connect

Figure A-9.1-1: Login page

= | ALL CODE IS GUILTY ,
|) !) UNTIL PROVEN InNoceNT | €76-IDfIvEn eveiopment

| Welcome Fabian Piau

Home Page

Managers management

Customers management
Add a manager

Rent out an apartment Maodify a manager (password)
Release an apartment Delete a manager

Statistics

Logout

® Fabian Fiau - Project TDD [2007/2008]

Figure A-9.1-2: Manager management sub-menu

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 9. Appendices

ALL CODE IS GUILTY -
UNTIL PROVEN INNOCENT Teﬂ-l)llven U@Velopment

| Welcome Fabian Piau

Home Page

Give personal details :
Managers management

Firstrame * L 1
Customers management
Rent out an apartment
Release an apartment Date of birth * 01 v |01 »|1000 =
Average salary (€) * < 500 -
Statistics

Email address * |

Logout oh b
Add
Figure A-9.1-3: Customer management, add a new customer function
.]
e B Y ALL CODE IS GUILTY
. UNTIL PROVEN INNOCENT Teﬂ-l)l‘lven M@Velopmc‘l‘lt

| Welcome Fabian Piau

Home Page
Managers management Firstname : Sarah
Customers management Lasinamel: oy
Date of Birth : 08/03/1970
Rent out an apartment Salary : 1500 - 2000 €
Release an apartment)
Email address : sarah.connor@skynet.com
Statistics Phone number :
Logout Date of registration : 20/03/2008
Current Apartment : This customer has not booked an apartment yef..

Figure A-9.1-4: Customer management, view customer function

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 9. Appendices

m
L d ALL CODE IS GUILTY , "
] . UNTIL PROVEN INNOCENT 1 E/S-IMIVEN WEvEIopmen

| Welcome Fabian Piau

Home Page

Managers management
Customers management Select an apartment in the list :

Rent out an apartment
Release an apartment

Apartment 1

Statistics ?ngngi 3 —
Logout
® Fabian Piau - Project TDD [2007/2008]
Figure A-9.1-5: Rent out an apartment function, step 3: apartment selection
e]
i ALL CODE IS GUILTY

UNTIL PROVEN thocent 1 €7¢-i2fiven ieveropment

l N
1

| Welcome Fabian Piau

Home Page
Number of customers registered g
Managers management Number of tenants 5
Customers management >> Tenant Rate 62.50%
Rent out an apartment Total number of apartments M
Release an apartment Total number of apartments available 29
== Occupation Rate 14.71%
Statistics
Logout
Buckingham Palace 0/1
Claredale House 113
Sir John Cass Hall 9/10
The Arcade Hall 15/15
Tufnell Park Hall 415

® Fabian Piau - Project TDD [

Figure A-9.1-6: Statistics function

B.Sc Internet Technology November 2007 — May 2008

9. Appendices

TDD & EJB 3.0

9.2 Relevant source codes

Interesting source codes of my application in relation with TDD.

€/t

< ((.a0dunf,,

“ang,, .en, “.Aon7,,)18beuepppe - ueaguepn)as je434asse
(Caedunt, “, 19N,)uIBo1AL1a9A " UBSgURHN) | INNIONII8SSE

c(.aadunf,, “Qpiomssediab-w) spenb3jassse
Jaaing.. “Qauweuassniab-w) spenb3lassse

c(.aadunf,, “,..1an],.)ulbolAs1a9A - ueaguep = w Jabeuep
c((aadunf,, “.paing,. “.an71,, “..A4on7,.)Jabeuepppe - ueaguep)ana|1aasse

c((.a0dund,, “,. . 1a»n1,,)u1bo71As 149N UueagUE) | INNIIASSSE
3} OQuaabeuepuorlealisiuiupylsal proa orpgnd

£(..98TT8T.. “(paomssedyrab-w) sjpenbjraasse

c(.4nerd,, <Qoauweuassnlyab-w) spenbijassse

¢(..98TT8T.. “..Jnerd,)urboiApraan-ueaguey = w aabeuey
} Quoryewaoguipiyepsssy proa orggnd

{
£((.98TT8T.. “.XXXX,,)UlbBo7AL 148N UBagURN) | INNIAISSSE
S(GARAA,, ©.anerd,)urbolAg1aan-ueaguep) | [NNIASSSe
} Quorzeuaogupreau]assy proa orpgnd

{
SC(rnu “ppnu)uiboiAgrasn-ueaguepy) | [NNIASSSE
S((rnu ©,,aweuaasnAp,,)uirbolAg1a9A " ueague)y) | INNIASSSE
((..paomssedAp,, “1Inu)uiboiAgiaan-ueague)y)|nNNIIasSse
} Quorzeuwaogulssinisay proa orpgnd

£ Queagiuauyaedyalesaad = ueagidy
¢ (Queaguawolsn)aleald = ueadlisn)
¢ Queaguabeuepalreald = ueague)

} Odnias proa paloajoud apraasanQd

‘ueagldy uuaniaa

{
cQooeuaoersiurad-xa
} (x@ uo13dsox3) yozeo {

£ (..ar3so1nuasiuauiaedy,,)dnyoo] -3xa3uod(grialowayad 1niasiuaulaedy)

= ueagldy
£()3X23Uo) eI IU] MBU = 3IX3IU0D JIXdIU0) Jeuly
} Ay
} O ueagilusuwiyaedyaleaud griayowayadiniaasiuauiaedy ajyenrad

‘ueaglisn) u.anlaa

{
£ Qooeuaoersiurad-xa
} (x@ uo1xdaox3) yozeo {
£ (,.903921A18848W03SNY,,)dN3j00| “3x23U02 (gLI9I0WaYaD IAISSABWOLSNY)

= ueagisn)
2()31xa3uo)e11Iu] MaU =]3X9IUO0D IX3JU0) Jeuly
} Ann
} O ueaguswolsn)aleald gr3ialowayadInaasaawolsn) ayeatad

{

‘ueaguep uanlad

{
£ ()aoeuaoersiurad-xa

} (x@ uoradeox3) yozeo {

£ (..dr3eo1naasaabeuey,,)dnyoo] “3xa3uod(grialowsyad 1niasaabeue))

= ueaguep
c()1xa3uo)eI1Iu] MaU = JX3IUOD IXIdJU0) Jeuly

} A

3} O ueagusabeuepsalreaad grislowayadinaasaabeuey ayenrad

tueagldy gr3ajowayadiniasiuauiaedy ajenrad
‘ueagisn) gr3alouwsyadIniasaawolsn) ayenrad
‘ueaguep gr3alowayadiniasaabeuep ayearad
} asepisa)l spuaixa 1sajlrun ssepod orpgnd
‘dr3alowayadinaasaabeue)y-ssajalels- |apow jiodwi
“yoopueagasiAaasaabeue) -ssajalels- |apow jiodwi
£9r3930WayYad IAI9SABWOLSN) " SS8]93e1s~ |apouw Jaodui
£300)\UBDgaI INIDSA8WOISN) " SSa93els - |apow Jiodwi
fgr3arowayadiAaasiuawlaedy - Ssa]a3els - japou Jaodui
£)oopueagadiAaasIuawlaedy - Ssaa3els - [apou Jaodui
‘aabeuep-A313ua - 1apow Jaodwi
fosedysa] “4omaweday -3runl Jaodwi

f3xajuo)peryu] -burweu-xenel Jaodwi
£3xa3u0) - Burweu-xenel 3aodwi

£3so1 - 1opou abexoed

uonedldde Aw Jo S1591 ay3 ||e JO 151

eael3sajuun

November 2007 — May 2008

B.Sc Internet Technology

9. Appendices

TDD & EJB 3.0

{
SpINu uanjaua

{
‘W uanjaa
3} C ((paomssed)sjpenba- Qpaomssedlrab-w)
w7 (suweuuaasn)sjpenba- Qaueuaasniab-w) i1
(Beuepasiy : w uaabeuep)aol
}(paomssed Burals “sueuaasn Burals)uiboiAprasan asbeuep o1jgnd

{

}(aabeuew uabeuep)aabeuepyanowsas proa o1jgnd

{
SpInu uanlaa
}O11vpurdaabeuepfasnb <asbeuep>3si17 a1jqnd

{
SpInu uanjaa
}(A311us 108fgo)Arnruzasisaad 31o08fqo orpgnd

{
SpInu uanyaa
} (A313us 108fqp)A313uzsbasu 308fqo orpgnd

{
puoq,, “,sawer,, *,puog,,)1abeuey mou)ppe-Leueyrst]
nerd,, “,ueiqed,, ‘,neld,)1abeue) mau)ppe-bBeueplsi|

} Op»joopueagaornuasaabeue)y o1 jgnd

©(C.L00. ¢
£((.98118T.. °

¢ (O<avbeuep>3s11heddy mau = Beuepdsi] <aabeuep>1si] ayearad
} gar3elrouwsyasinaasaabeuey sjuawajdwi Moopueagadinaasaabeuepy ssepd orpgnd

< aabeuep - A313uUa " apow Jaodwi

fAaand-aoualsisaad-xenel jaodwi
£Uu0131daox31 I NSayoN "aoualsisaad -xenel jaodwi

tssajarels-qla-xenel jaodwi
tanoway-qla-xenel jaodwi

f3si17-p1an-eael jaodwi
tdepyseH-p1an-eael jaodwi
3si17Aeday - p1an-eaefl yaoduwi

‘ssajalels- |apou abexoed

suoluny Jadeuew ay3 1593 03 393[q0 20w UMO AN

eAe[powueagadiniasiaSeue|n

€/

{
<(,."3S1X8 310U Ssaop
paxo0q sey J48wolsnd siyl jusuiaedde syl “uouul,, ‘ojur) sjpenbjyrassse
£ ((05)HBuo7 mau)uoryewaojujiusuiaedyrsb-ueagidy = ojul Burals

Jenujluaulaedylabisal proa orggnd

{
*(.<a/>11eH ssed uyor
A1S<g> 92UdPISad dyl Ul <g/>z<q> jusawidedy, “ojul) spenb3luassse
£ ((2)buo7 mau)uoryewaojujijuswiiedylab-ueagidy = ojul
*(.<a/>11eH ssed uyor
A1S<g> 92UdPISad dyl ul <gq/>T<q> Jusawidedy, “ojul) sjpenb3juassse
£ ((1)BuoT mau)uoryewaojujusuiaedyrab-ueagidy = ojur Burals

} Quoryeuwaoyul

3} Quoryeuwuogulpijeprusulaedylabysal proa orggnd

c((.,suoageq,, “..8yl..)AawWolsSnHalajap ueaglisn))asje4liasse
c((.,suorteq.. °..9Yl..)AawWo3sSN)Hala|ap ueaglsn))an.i|liasse

£((..999999999., ..00S >.. “..W0D-31Samiejdsuoljep,,

“..006T/T0/T0.. “..Suoljed.. “..9YL.)J8U0ISNOppe-ueagiIsn)y)as|e411esse
(G “.000E <. “..A3-31SOMURIPSUOL|ED,,

¢..066T/S0/T0.. “..suoljped, °..dYl..)Adwolsn)ppe-ueagisn))ani|yiasse

3} OQuaswolsnjuorlealsiuiupylsal proa orpgnd

{

(GALIOL,
CaIing., CLainT., “../A0n7,,)a8beueppaomssedabueyo - ueaguep)ase41a9sse

£((.98T18T..
<. Jnet <.uelqged,, ‘,.neid,) abeueppiomssedabueyd - ueaguep)and]1Iasse
SCGaaing,, LT, “LAonT,,)49beuepela|ap T uesguep) s e43a9sse
c((.a0dunt,, “,..9n1,,)u1bo1A3 149N UueagUEN) | INNIASSSE
cGaing,., “.n,, “..A0n7,,)a9beuepalaap -ueaguep)and 3 A9Sse
SCGaing,, <007, “.AonT,,)196eueps1e]ap T uesgue))sse41a9sse

November 2007 — May 2008

B.Sc Internet Technology

9. Appendices

TDD & EJB 3.0

€/€

{
3} Queaganowaa proa orjgnd
aA0WaYD

£3S7v4"ueajoog uaniad
aspo {
f3NyL-ueajoog u.anlad

¢ (paomssedmau) paomssedlas -u

T (rnu =i w) 3

¢ (prasabeuew)plAgiaabeuepisixa = w aabeuep

} (paomssedmau Buruls “paomssedpjo

furals “prasbeuew Huo)plAgasbeueppiromssedabueyo ueajoog orpgnd

€/t

3Sv4 "ueajoog uuanlada
aspe {
23Nyl -ueajoog uuaniaia
£ (paomssed)paomssedlas-u
T ainu =i w) 31
‘¢ (oweudasn “auweulsainy ‘aueulse])usabeueplrsixa = w aabeuep

}
(paomssed Burals “sweudasn Burals
‘aweulsuaiy Burals “sweulse] Buruals)asbeueppiaomssedabueyd ueajoog o1 jgnd
{
SpInU uanlaa
}(praabeuew Buo)piAgaabeuepalragap ueajoog o1pgnd
{
£3Sv4"ueajoog uaniad
aspe {
3Nyl -ueajoog uaniad
< (w)anowaua - Heuepasi |
} e =i w 1
‘(oweudasn “auweulsaiy ‘aueulse])uabeueplrsixa = w aabeuep
}(auweuaasn
Burals “aweulsuairy Burals “asweulse] HBuirualrs)aabeuepalagjap ueajoog o1jgnd
{
£357v4"ueajoog uaniad
{
£3nNyL-uesajoog uanlad
¢ ((paomssed
‘aweuaasn “aweulsJaiy ‘auweulse])asabeue)y mau)ppe-bHeuepisi|
} (inu == (sweuassn “suweulsaiy ‘sweulse])usbeuepyIsixa) J1
} (paomssed Buruls “sweusasn Burals
‘asweulsan} Buruls “sweulse] Buruals)asbeuepppe uesajoog d1jpgnd
{
SpInu uanyaa
3} (prasbeuvew Buoi) plAguasbeueprsixa aabeuep ayenrad
{
SpInU uanlaa
{
‘W uanyad
¢

((aureuaasn)sjpenba- Qauweuaasniab-w) »% ((sueulsuaiy)spenba- Qauweulsar43ab-w)
»% (aweulsep)sjpenba- Qauweulse13ab-w) Ji
(Beuepasiy : w uabeuep) uoy
} (sweuuasn

Burals “euweulsanry Burals “esweulse] Buruls) asbeuepisixe asbeuep axearad

November 2007 — May 2008

B.Sc Internet Technology

9. Appendices

TDD & EJB 3.0

9.3 UML Diagram of the prototype application

Tisuawpede <uswedy=1s]) 1suswpedy1as ploa +

() 1uawpedyzh suawpedy =15 +
(2weu Buns) swenlas ploa +

() aweppab Bulls +

{uonduosap Bulns) uonduossaqias ploa +
() uenduossaqeh buls +

(ssaippe BULLS) S52.PPYIRS PIOA +

() ssaippy1ab Bus +
{aweu Buls) aauapisay +

(paomssed BUnS) pIosmSSEdIRS DIOA +
() plomssedi=b buLis +

(puzbeuew BuoT) puabeuepl2s ploa +
() puabeuspab Buo +

(aweuse| BuLls) sweulsEleS pIoA +
() awewse726 BuLs +

(=weuisy Bulls) sWeLISIJ1ES ploA +
() swewsidi=b Buns +

BuLs 'aweusy Bulls 'aweuse) Buls) 1ebeuey +
() 1oBeuep +

auweuiasn BuLls -
plomssed Bulns -
puabeuew GuoT -
aweuise| BuLls -
awews.y Buls -

1abeusyy =|

(12aWolsno J8Wwolsng) JAWo)SNISA0LIE] JSW0ISND +
{12W0ISND Ja0ISNg) JIBWOISNIPPE ISWo1SNT +
(181718W01SND <12W0SN0=1S1T) 1SI7/2U0ISNJISS PIoA +
() 1B awnsnoial «12Woisns =18 +

{quinu BuoT) qunpes plos +

() quinp)2b buo +

(puawpeds BuoT) pUaWHEdy1aS plos +

. () pruawpedyab Buo +

BauapIsay gquinu Buo ‘puswieds BuoT) wawpedy +

{ews Buys)

() newgyeb Buys +

{uonensiBaygaiep dueisawl]) uonensiBayaiedies plos +
() uonensibayaeqeh dueisaw| +

(UHigagep BULS) UHIG2Iedias ploa +

() yrig=peqiet Bulys +

() 2ouspisay +

1suawWLeds <luawpedy=1s -
alweu Buls -

uoneliasap Bulns -

ssalppe Bulns -

aauapisay =

() uaswpedy +

a0UspISa. adUSpISaY -

ISI2W0ISAD <I2W0ISND 1S -
quinu BuoT -

pruawpede GuoT -

Wawpedy =]

wawpede uswpedsy -
Aees Buls -

auoyd Buls -

auleulse| Bulls -

alleuls .y Bus -

ez Gulys -
uone.siBayaiep duesawi) -
yHigaiep Guls -

pUBwesng BuoT -

J2wosng =

Figure A-9.3: Full UML diagram

November 2007 — May 2008

B.Sc Internet Technology

TDD & EJB 3.0 9. Appendices

9.4 Simplified Entity Relationship Diagram of the prototype
application

APARTMENT

APARTMENTID

T RESIDENCE
RESIDENCE
RIRENC: TS NAME
DESCRIPTION
ADDRESS

CUSTOMER
CUSTOMERID
MANAGER LASTNAME
FIRSTNAME
MANAGERID DATE_REGISTRATION
LASTNAME DATE_BIRTH
FIRSTNAME EMAIL
USERNAME SALARY
PASSWORD PHONE
APARTMENT
| |
! CAPTION |
5 |
| PRIMARY KEY |
| FOREIGN KEY :
1

Figure A-9.4: Simplified Entity diagram

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 9. Appendices

9.5 A code refactor example

Before refactoring

public Boolean addManager(String lastname, String firstname,
String username, String password) {
Manager m = new Manager();
m.setLastname(lastname);
m.setFirstname(firstname);
m.setUsername(username) ;
m.setPassword(password) ;

Manager m2 = new Manager();
String str = "SELECT m FROM Manager m WHERE m.username = :username’;
Query query = em.createQuery(str).setParameter('username', username);
try {

m2 = em.find(Manager.class, ((Manager)

query.getSingleResult()) -getManagerid());

catch(NoResultException e) {
persistEntity(m);
return Boolean.TRUE;

¥

return Boolean.FALSE;

}

public Boolean deleteManager(String lastname, String firstname, String username){
Manager m = new Manager();

String str = "SELECT m FROM Manager m WHERE m.firstname = :firstname AND
m.lastname = :lastname AND m.username = :username";

Query query = em.createQuery(str).setParameter(''firstname",
firstname).setParameter('lastname', lastname).setParameter(‘'username', username);

try {

m = em.find(Manager.class, ((Manager)

query.getSingleResult()).getManagerid());

}

catch(NoResultException e) {
return Boolean.FALSE;
}

em.remove(m);
return Boolean.TRUE;

}

public Boolean changePasswordManager(String lastname, String firstname,
String username, String password) {
Manager m = new Manager();

String str = "SELECT m FROM Manager m WHERE m.firstname = :firstname AND
m.lastname = :lastname AND m.username = :username";
Query query = em.createQuery(str).setParameter("'firstname",
firstname) .setParameter ("' lastname’, lastname).setParameter(‘'username', username);
try {
m = em.find(Manager.class, ((Manager)

query.getSingleResult()) -getManagerid()):
¥

catch(NoResultException e) {
return Boolean.FALSE;

m.setPassword(password) ;
return Boolean.TRUE;

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 9. Appendices

During refactoring (change, add, deletion)

// New method to search a manager
private Manager existManager (String lastname, String firstname, String username) {
Manager m = new Manager();
String str = "SELECT m FROM Manager m WHERE m.firstname = :firstname AND
m.lastname = :lastname AND m.username = :username';
Query query = em.createQuery(str).setParameter("'firstname",
firstname).setParameter('lastname', lastname).setParameter(‘'username’, username);
try {
m = em.find(Manager.class, ((Manager)
query.getSingleResult()) .getManagerid());
}

catch(NoResultException e) {
return null;
}

return m;

}

public Boolean addManager(String lastname, String firstname,
String username, String password) {
Manager m = new Manager(Q-lastname, firstname, username, password);
// Creation of a new constructor in the manager entity

m—setkastnrameClasthrame)+
m—setFHstrameCFiFsthame)+
m-setUsernameusername);
m-—setPassword({password)+
= + // useless variable
String str = "SELECT m FROM Manager m WHERE m.username = :username'';
Query query = em.createQuery(str).setParameter('username', username);
try {

m2— em.find(Manager.class, ((Manager)
query.getSingleResult()).getManagerid());

catch(NoResultException e) {
persistEntity(m);
return Boolean.TRUE;

}

return Boolean.FALSE;

}

public Boolean deleteManager(String lastname, String firstname, String username){
// 1 call the new method
Manager m =—newManagerO—+ = existManager(lastname, firstname, username);

return-Boolean-TRUE;

it (m !'= null) { // The condition is different because of the new method
em.remove(m);
return Boolean.TRUE;

} else
return Boolean.FALSE;

}

public Boolean changePasswordManager(String lastname, String firstname,
String username, String password) {
Manager m =—newManagerO+ = existManager(lastname, firstname, username);
String str = "SELECT m FROM Manager m WHERE m.firstname = :Ffirstname AND
m.lastname = :lastname AND m.username = :username';

B.Sc Internet Technology November 2007 — May 2008

TDD & EJB 3.0 9. Appendices

Query query = em.createQuery(str).setParameter("'firstname",
firstname).setParameter('lastname', lastname).setParameter(‘'username', username);
try {
m = em.find(Manager.class, ((Manager)
query.getSingleResult()) -getManagerid());

}
catch(NoResultException e) {
return Boolean.FALSE;

m.setPassword(password) ;

return Boolean.TRUE;

if (m '= null) { // The condition is different because of the new method
em.remove(m);
return Boolean.TRUE;

} else
return Boolean.FALSE;

After refactoring

private Manager existManager (String lastname, String firstname, String username) {

Manager m = new Manager();

String str = "SELECT m FROM Manager m WHERE m.firstname = :firstname AND
m. lastname = :lastname AND m.username = :username';

Query query = em.createQuery(str).setParameter("'firstname",
firstname).setParameter('lastname’, lastname).setParameter(‘'username’, username);

try {

m = em.find(Manager.class, ((Manager)

query.getSingleResult()) -getManagerid());

catch(NoResultException e) {
return null;
}

return m;

}

public Boolean addManager(String lastname, String firstname,
String username, String password) {
Manager m = new Manager(lastname, firstname, username, password);

String str = "SELECT m FROM Manager m WHERE m.username = :username';
Query query = em.createQuery(str).setParameter("'username', username);
try {

em.find(Manager.class, ((Manager) query.getSingleResult()).getManagerid());

}

catch(NoResultException e) {
persistEntity(m);
return Boolean.TRUE;

}

return Boolean.FALSE;

}

public Boolean deleteManager(String lastname, String firstname, String username){
Manager m = existManager(lastname, firstname, username);
if (m 1= null) {
em.remove(m);
return Boolean.TRUE;
} else
return Boolean.FALSE;

}

public Boolean changePasswordManager(String lastname, String firstname,
String username, String password) {
Manager m = existManager(lastname, firstname, username);
if (m 1= null) {
m.setPassword(password) ;
return Boolean.TRUE;
} else
return Boolean.FALSE;

B.Sc Internet Technology November 2007 — May 2008

9. Appendices

TDD & EJB 3.0

9.6 SQL scripts

€/t

(.NY0 ZN puejbu3j uopuo AemojoH peoy AemojjoH TO¥

-Gg8E. “."911Ss uo sauoydAed ayl 03 uorlippe ul auoydajal e sey wooapaq Apnis
yoe3 -sallnjigesip YIm s3uspnis 40} Ajpedry1oads paubisap swooua paidepe jo
19qunu B Sey OS|e apeddy ayl "Salli]lide) WooJayleq pue Jaulpsuayolriy padeys
aJe auaayl Sslel 9yl Jo yoea ul pue BuIIdILO-J|3S SI 9peddy 9yl ~SIUIPNIS
X1S 03 dn jo sdnoub uoj “sjyepl aspuab-paxiw pue ajburs ur swooupaq Apnis
-216urs sapinoad J1eH 9peddy Syl IIeH d9pedudy dyl. ‘.11BH 9peddy ayl.)S3INTVA
(SS34aav “NOILdIY¥OS3A “INVYND

3ON3AIS3Y OLNI 1Y3SNI

£(.3d9 23 uopuo ‘19841S BlepaJR|).

“.7911S U0 sallij1oe} auoydajal pue Aupune] sey osje |ley Burisalyed

-39S SIUl -"Sal111]10B) WOOJAyIeq pue usyoliy paleys aie aiayl sield ayl Jo
yoea u] -sjusapnis anl} oy dn jo sdnoab uaoj sjyepd Japusab-paxiuw pue ajbuis ui
swoouapaq Apnis-ajburs sapinoad asnoH ajepade])d. ‘.9SNoH ajepase]d.)SINIvA
(SS34aav “NOI1LdI¥dS3a “IWVND

JONIAIS3IY OLNI L1Y3ASNI

c(.puejbuz T "M"S “uopuoT dJed sauer -1IS

aoeled weybumong, “,90Us8pIsSad UOPUOT Je1d1330. ‘.ddejed weyburong.)SINTIvA
(SS34aav “NOILdI¥dS3a “IWVND

JON3AIS3Y OLNI 1Y3SNI

£(.930 LN uOpuOT ‘pY UOISSIPPNH “IIBH 4Bd 11S9UINL,. “. SUOITBOBA JUBSA

MON pue sewlsiay) Buranp ao sAeprjoy orpgnd “spuadesm 3e jou Ing “AepriH

03 Aepuop speaw Buruans sapinoad JleH dded [1dujnl -9311s uo sauoydAed

8yl 01 uollippe ul auoydalal e sey woouapaq Apnis yoea pue ‘ueq pasuadl]

pue a33aJpune] e sey |ley SIYlL "SA00]J Sy} |Je uo Salljidel Auojene]

pue Jamoys pue “susyolid padeys ‘swoodpaq Apnis-ajbuils ylim aosuspisad

40 11ey 3pIng-asodund st JleH >ded [I12u4nL, “.11BH dded 1I9udnL.)SINTVA
(SS34aav “NOILdI¥OS3A “IWVYND

JONIAIS3IY OLNI LY3ASNI

£(.01L 63 uopuoT “38943S |19M OST.

©,"911S UO salll]1oe) auoydajal pue Aupune] sey pue Buirialeod-jas si |ley
SIY] "WOOJ4 UOWWOD JeunuWwod e SI 843yl "SJA00[J [le U0 sallijioey Burysem

pue SalJa03eAR] “SJA9MOYS “SUBUDLIY JeUNWWOD “swooapaq Apnis-ajbuls yyim
32019 311ng-asodand s1 JleH sse) uyor 41S dYL. “.11eH SSe) uyor 41S.)SIANTVA
(SS3¥aav “NOILdI¥IS3A “INVYND

JON3IAIS3IY OLNI 1H¥3SNI

(. dersoelq. “,.pJopeA, ‘ojed. ‘.J0peA, ‘€)SIANTVA
(QHOMSSYd “IWYNYISN “IWYNLSHIH “IWYNLSYT “AI¥IOVNYA)
YIOVNYN OLNI 1H3SNI

£(.200. “.fpuoq, “.sewer, “,puod. “2Z)SIANTVA
(QHOMSSYd “IWYNYISN “INYNLSHIA “IWYNLSYT “AI¥IOVNYA)
YIOVNYA OLNI 1H3SNI

£(.98TT8T. “.4nerd. ‘.uelqed, “.nerd. “T)SINTVA
(QHOMSSYd “IWYNYISN “INYNLSHIA “IWYNLSYT “AI¥IOVNYA)
YIOVNYW OLNI LY3ISNI

-3ON3A1S3Y Wodd 313713a
- INJNLYVdY WO¥d 31373a
~d3INOLSND WoMd 31373d

SHIOVNYW WOMd 31373d

1/t

(00T “.N3I9 ¥3aWOLSND.) SANTVA
(@NYA N3O “IWYN NID)
HOLVYINTD Al OLNI LY3SNI
(00T “.NI9 YIIVNVWN.) SINTVA
(G@NYA NI9 “IWYN NID)
HOLVY3INI9 Al OLNI kmmmzm
7NN 10N (0“9)d3gNNN INTVA N39
“TINN LON (02)2dVHOUVA JWVYN N39
) HOlvdaNa9 a1 31avl mp<mmm
(QIINTWLYYEY)
AININLAVAY SIFONTHIAFY (INTWLEVAY) AIM NOIFHO- M4 HIWOLSND LNIVILSNOD
“(@rYanoLsnd) A3 AYVINIMd Md ¥3IWOLSND LNIVILSNOD
“43GWNN LNFWLEV Y
“(ST)ZUVYHOUVA INOHd
“TINN 10N (ST)ZUVHOUVA AdVIVS
“TINN 10N (0S) 2UYHOUVA TIVINI
“TINN 10N (OT)2HVHOUVA Hldlg 31va
“IINN 10N 3LVA NOILVHLSI93Y 31vd
‘77NN 10N (0€)ZHVHOUVA FWVYNLSHIH
“TINN 10N (0€)2dVHOUVA JNVYNLSYT
‘11NN 10N (0“0T)HIgGNNN a1d43IN0LSND
) ¥3aWoLsSNd ITaviL mp<mmm
(INvYN) 30N3AIS3Y
SIONFYIHTY (IONIAISTY) AN NOIFHOd M- INIWLYVCAY LINIVHLSNOD
“(QILNANLAYAY) A3 AYVWIYD Md LNINLAVAY LNIVILSNOD
“TINN 10N (0S)ZdVHOHVA FONIAISTY
“TINN LON dIGWNN WNN
“TINN LON d3GWNN a1 LNIWLYVAY
)ININLAVAY 37avL mh<mmoﬁ
(INVYN) AT AMYWIYd Md FONIAISIH INIVHLSNOD
“(000T)ZYVHOUVA SS3I™aAay
“(000%7) ZdVYHOUYA NOILd1¥OS3A
“TINN 1ON (0S) ZdVHOUVA JNVYN
) JON3AISTY FavL mp<mmw
(QIYIOVNYA) AT AYYWIYd ¥IOVYNYIN Md LNIVHLSNOD
“TINN 10N (OT)ZdVYHOUVA QHOMSSYd
“TINN LON (OT)ZUVYHOUVA JNVYNYISN
“TINN LON (0€)ZYVHOUVA FWYNLSHIH
“TINN 10N (0E€)ZUVYHOUVA INYNLSYT
“TINN 10N (0“9)YIANNN AIdIOVNYIN
) Y¥IOUNVW FTgvL JLVIHO

SY3OVNVAN 3T9VL dodd
Z43IN0LSND 31gvL dodd
SININLYVAY 3719VL dodd
Z30N3AIS3Y 379Vl doMd

1d11ds uoneasd sajqel

November 2007 — May 2008

B.Sc Internet Technology

9. Appendices

TDD & EJB 3.0

€/¢€

‘(6 “.00S >.

¢ .Ba0-1se8qPbuo-Buly. “.006T/S0/20. “.80/€0/22. “.Bumd. *.Buod. *z)S3aNIvA
(ININLYVAY “ AdVIVS

“TIVNE “HLY19 F1va “NOILVYLSIOFY 3Lva “INVYNLSHIA “INVYNLSYT “aI¥anoLsnd)
YANOLSND OLNI 1H3SNI

£(8 “.59218/2590. ‘.000€ <.

¢ .Wwod-addepi03oaa1p,. “.896T/0T/6Z. ‘.80/€0/2C. “.9A81S. “.SOOC. “9)SIANTVA
(INTFWLYYDY “INOHd “AdVIVS

“TIVNE “HLY19 31va “NOILVYLSIOFY 3Lva “INVYNLSHIA “INVYNLISYT “aI¥anoisnd)
YANOLSND OLNI 1H3SNI

:(.67.95T2PS0. “.00SZ - 000Z. *.wod-sauofpeuerpur,

‘.¥S6T/90/6T. “.80/£0/22. ‘.euelpuj,. “.ssauor. “G)SINTVA

(INOHd “ AdVIVS

“TIVNE “HLY19 31va “NOILVHLSIOFY 3Lva “INVYNLSHIA “IWVYNLISYT “a1¥anoisnd)
4ANOLSND OLNI 1H3SNI

(e “.9v2T¥/9580. “.000€E

<. “.4)73eqpuewdreq. “,996T/L0/60. ‘.80/€0/8T. .80ndg, *.sukepm,. ‘¥)SIANTIVA
(INTWLYYDY “INOHd “AdVIVS

“TIVNE “HLY19 31va “NOILVHLSIOFY 3Lva “INYNLSHID “IWYNLSYT “aI¥3noLsnd)
YANOLSND OLNI L1H3SNI

(TT “.00S >.

‘ .wod-orbewphaaey, “.€T6T/TT/E€C. “.80/€0/0Z. “.AaaeH. “,19330d. “€)SIANTVA
(INTNLYVAY “AdVIVS

“TIVNE “HLY19 31vd “NOILVYLSIOFY 3Lva “INYNLSHIA “INVYNLSYT “aI¥anoLsnd)
YANOLSND OLNI 1H3SNI

(z “.00ST - 000T.

‘.Woo-younddAooa,. “.G96T/60/T2. “.80/€£0/6T. “.Afo0y. “.eoqped. “Z)SIANIVA
(INTNLYYAY “AYVIVS

“TIVNE “HLY19 31va “NOILVYLSIOFY 3Lva “INVYNLSHIA “IWVYNLISYT “aI¥anoisnd)
4ANOLSND OLNI 1H3SNI

£(.000Z - O0ST. °.W0D-33UAYSPAOUUOD-yedes,

©.0.6T/£0/80. .80/€£0/0Z. “.yedesS. “.aouuod. “T)SIANIVA

(AYVIVS

“TIVNE “HLY19 31va “NOILVHLSIOFY 3Lva “INYNLSHIA “IWYNLSYT “aI¥anoLsnd)
4ANOLSND OLNI 1H3SNI

(.11BH 8peddy 8yl. ‘ST “¥E)SANTVA
(30N3a1S3Y “GNNN “d1LINIWLEYAY)
AININLHYAY OLNI LH3SNI

(.11BH 8peddy dyl. ‘T “€E)SANTVA
(30N3AIS3Y “GnNnN @l INIWLEYdY)
AININLHYAY OLINI LH3SNI

(.11BH 8peddy dyl. ‘€T “Z€)SANTIVA
(30N3AIS3Y “GNnNN @l INIWLEYdY)
AININLHYAY OLINI LH3SNI

S(.11eH 8peouy dyl. ‘2T “TE)SANTIVA
(30N3AIS3Y “GNNN @l ININLEYdY)
AININLAYAY OLINI LH3SNI

C.I1eH 8peduay ayl. ‘TT “0£)SANTIVA
(30N3AIS3Y “gNnNN @l LNINLEYdY)
AININLAYAY OLNI LH3SNI

(.11BH 8peddy 8yl. ‘0T “62)S3ANTVA
(30N3a1S3Y “GNNN “d1LINIWLYVAY)
AININLHYAY OLINI LH3SNI

/4

€/t

“018 // SANTVA
(30N3AIS3d “GNNN QI ININLEYdY)
AININLAVAY OLNI LH3ISNI

.11BH d@peoay ayl. “Z “92)SINTVA
(30N3A1S3Y “gNnNN “QIININLEYdY)
AININLAVAY OLNI LY3ISNI

.11BH d@peoay ayl. ‘9 “SZ)SINTIVA
(30N3A1S3Y “gNnNN “@IININLEYdY)
AININLAVAY OLNI LH3SNI

S(.11'H 8peddy dyl. ‘S “¥Z)SANTVA
(30N3AIS3Y “GWNN “a1LNIWLEVAY)
AININLAVAY OLNI LH3ISNI

S(.11'H 8peddy dyl. ‘¥ “€Z)SANTVA
(30N3AIS3A “GNnNN QI INIWLEYdY)
AININLAVAY OLNI LH3ISNI

f(.11®BH 9peddy dyl. ‘€ “ZZ)SANTVA
(30N3AIS3Y “GNNN QI INIWLEYdY)
AININLAVAY OLNI LY3ISNI

f(.11BH dpeddy dyl. ‘z “TZ)SANTVA
(30N3AIS3d “GNNN “QIININLEYdY)
AININLAVAY OINI LY3ISNI

t(.11BH dpeddy dyl. ‘T “0Z)SIANTVA
(30N3AIS3d “GNNN “QIINIWLEYdY)
AININLAVAY OLNI LY3ISNI

t(.8snoH ajepaied. ‘0T “6T)SANTVA
(30N3AIS3Y “GWNN “alLNIWLEVAY)
AININLAVAY OLNI LY3ISNI

t(.90e|Rd Wweybumpong. ‘T “6)SANTVA
(30N3AIS3Y “GNnNN “alINIWLEYdY)
AININLAVAY OLNI LY3ISNI

SCa11eH daed 119UINL. “S “8)SANTVA
(30N3AIS3Y “GNnNN “alINIWLEYdY)
AININLAVAY OLNI LY3ISNI

SCalleH daed 119UINL. ‘¥ “Z)SANTVA
(30N3AIS3d “GNNN “QIININLEYdY)
AININLAVAY OINI LH3ISNI

S(.11BH daed 118UINL. “€ “9)SANTVA
(30N3AIS3d “GNNN QI ININLEYdY)
AININLAVAY OLNI LH3ISNI

S(a11BH daed 118UINL. ‘2 “S)SANTVA
(30N3AIS3Y “gNnNN QI INIWLEVdY)
AININLAVAY OLNI LY3ISNI

SCulIBH daed 1IdUINL, ‘T “¥)SINTIVA
(30N3AIS3Y “GWNN “a1LNIWLIVAY)
AININLAVAY OLNI LH3SNI

S(.11'H SSe) uyor J41S. ‘€ “€)SANTIVA
(30N3AIS3Y “GNnNN “alINIWLEYdY)
AININLAYAY OLNI LY3ISNI

S(.101BH SSeD uyor 418, “Z “2)SANTIVA
(30N3AIS3d “GNnNN “aIININLEYdY)
AININLAVAY OLNI LY3ISNI

(.10eH SseD uyor 1S, ‘T “T)SINTVA
(30N3AIS3d “GNNN ‘a1 ININLEYdY)
AININLAVAY OLNI LY3ISNI

November 2007 — May 2008

B.Sc Internet Technology

TDD & EJB 3.0 9. Appendices

9.7 How to deploy and start the sample application

At least, you need a database and also the Java Enterprise Edition Development Toolkit installed on
your system.

The database | have used is Oracle Database 10g Express Edition* (Oracle Database XE) which is
entirely free. To have more information and if you want to download this software, you can visit this
link <http://www.oracle.com/technology/products/database/xe/index.html>.

To download Java Enterprise Edition, the link is <http://java.sun.com/javaee/downloads/index.jsp>
and select the Java EE SDK to download.

Once you have installed all this software on your system, you have to prepare the database. | created
for you two automated scripts®*. You will find the files at “TDD_Project\Data_files”. Simply run
“CreateTables.sql” then “Insert.sgl” in the SQL client from your database.

The second step is to start the server:

1. You can use Oracle’s standalone application server, oc4j. This server may be downloaded
from Oracle’s website <http://www.oracle.com/technology/tech/java/oc4j/index.html>, or
you may use the oc4j standalone server that comes with JDeveloper if it already installed on
your machine.

2. Open the terminal (Start > Execute > type “cmd” > ok)

3. Change to the folder where is located your server. If you use the oc4j standalone server that
comes with JDeveloper, the server is located in the folder jdev_home/j2ee/home and is
packaged in the file ocdj.jar. (Note: jdev_home represents the folder where you have
installed JDeveloper) Type “cd jdev_home/ j2ee/home”

4. Then, type “jJava —jar oc4j.jar”

5. The first time you run the server you will be asked for a username and a password. Type
“tdd2008” for example (Note: you need character AND numbers in the password, it is
important that you remember this password)

Now you can deploy and execute the sample application:

1. Copy the folder “TDD_Project” on your hard drive

Open the terminal

Change the path to TDD_Project.

Type “cd <where you have copied the folder>\TDD_Project”

Type “ant clean” to ensure a clean build

Type “ant” to compile, package and deploy EJB, Web and Client modules
Type “ant run” to run the application

Start your browser and go to the following URL :
http://localhosat:8888/tdd

N

No vk

You will see the login page (Figure A-9.1-1), if you have some errors that you do not arrive to solve.
You can try the second method on the following page.

* Note that you can choose another database, for example MySQL Database but you certainly will have to do some modifications in the
SQL Scripts (creation of tables and insertion of data).

B.Sc Internet Technology November 2007 — May 2008

http://www.oracle.com/technology/products/database/xe/index.html
http://java.sun.com/javaee/downloads/index.jsp
http://www.oracle.com/technology/tech/java/oc4j/index.html

TDD & EJB 3.0 9. Appendices

9.8 How to deploy and start the sample application using JDeveloper

If you have some difficulties to run the application with the first method, you can use this second
method which will be simpler but need JDeveloper installed on your system.

First, follow the instruction of the first method until the second step. | think you already did it if you
have tried the first method unsuccessfully.

You need to install JDeveloper which is a free IDE like Eclipse but developed by Oracle. You can
download it at <http://www.oracle.com/technology/products/jdev/index.html>.

Once JDeveloper installed on your system and your database properly configured, open the
TDD_Project.jws file into JDeveloper. You will find this file at the root of the folder “TDD_Project\”.
This will open the entire project including the JavaServer Pages and entities used in the application.

o3 = @ ud = \= dJo BE W=
P.ppliu:atiu:uns MNavigakor lﬂﬂCDnnectiDns] E]

Y LY EBEl
Applications

[+1--F=] DeplayCampany

EEI--- Easymack
EEI--- extensionsdk
EEI--- it4AssessMovO?
EEI--- Manning TOD
EEI--- project
[
£
£
£

EI--- StockExchange_ESD3
EI--- k04 _jdev
r--{&] to5_mdb
- [55) b0 _jsF
>
El Deployment
| -7 Resources
> El Model
: {:l Application Sources
{ {:l Resources
IE ViewController

The new project is now open
(among others if you have

other current projects) \

“Model” part
(includes beans) ————

|

“ViewController” part (] Applcation Sources
(includes JSP pages) [Resources
-7 Web Content
EEI--- Test Driven Development

EI--- theMenu
EEI--- TradingSimulataor

5l

Figure A-9.8: The project is opened in JDeveloper

Now, you need to configure the connection to your database in JDeveloper. In the following, | give
you the configuration for an Oracle Database 10g Express Edition. If you use any other databases,
refer to internet to have more explanations about how configuring your own database with
JDeveloper.

B.Sc Internet Technology November 2007 — May 2008

http://www.oracle.com/technology/products/jdev/index.html

TDD & EJB 3.0

9. Appendices

Click the “Connections” tab (if not visible, use View / Connections Navigator). Right click on

“Database”, select “New Database Connection...”, and follow the wizard:

1. Typetab

2.

Connection name: tdd (or any name you wish to use)
Connection Type: Oracle (JDBC)

Authentification tab

Username: the username of your database
Password: the password of your database
Role: leave blank

Deploy Password: tick the box

Connection tab

Driver: thin

Host Name: localhost
Port: 1521

SID: XE

Service name: leave blank

Test tab
Test connection: Should display “Success”

Open your new connection and view tables (Structure & Data) to ensure that your connection to
your database functions properly.

After all configuration steps are completed, deploy the business components into the server. To
deploy the components, run any of the beans/entities in the project’s Model part (right click on the
component = Run). This will deploy all the components to the embedded OC4J server. To access the
JavaServer Pages, run the index.jsp page in the same way. You could find all the JSP pages in the
ViewController part.
It will open directly your browser at the good address and the login page (Figure A-9.1-1) will be
displayed.

B.Sc Internet Technology

November 2007 — May 2008

TDD & EJB 3.0

9.9 Glossary

Code coverage

Code refactoring

Component

Integration Testing

Testability

Test Case

Test Suite

Test Tools

Unit Testing

B.Sc Internet Technology

9. Appendices

Code coverage is a measure used in software testing. It describes the
degree to which the source code of a program has been tested.

Code refactoring is any change to a computer program's code that
improves its readability or simplifies its structure without changing its
results.

A minimal software item for which a separate specification is
available.

Testing of combined parts of an application to determine if they
function together correctly. Usually performed after unit testing.

The degree to which a system or component facilitates the
establishment of test criteria.

Test Case is a commonly used term for a specific test. This is usually
the smallest unit of testing.

A collection of tests used to validate the behaviour of a product or
functionality. In most cases a Test Suite is a high level concept,
grouping together hundreds or thousands of tests related by what
they are intended to test.

Computer programs used in the testing of a system, a component of
the system... e.g. JUnit.

Testing of individual software components.

November 2007 — May 2008

TDD & EJB 3.0

9.10 Acronyms

AP|
EJB
GUI
IDE
J2EE
JSEE
JDBC
INDI
JSF
ISP
MVC
TDD
TFD
ul
saL

XP

B.Sc Internet Technology

9. Appendices

Application Programming Interface
Enterprise JavaBeans

Graphical User Interface

Integrated Development Environment
Java Enterprise Edition version 1.4 or less
Java Enterprise Edition version 1.5
Java Database Connectivity

Java Naming and Directory Interface
JavaServer Faces

JavaServer Pages

Model View Controller

Test-driven development

Test-first development

User Interface

Structured Query Language

Extreme Programming

November 2007 — May 2008

	1.1 Project Aims
	1.2 Project Objectives
	1.3 Report Content
	2.1 Introduction
	2.2 Tests are everywhere!
	2.3 How to succeed with TDD
	2.4 The xUnit “family”
	2.5 Mock Objects
	2.6 Enterprise JavaBeans
	2.7 Conclusion
	5.1 Functionalities of my sample application
	5.2 Creating the list of tests
	5.3 Examples of annotations in EJB 3.0
	6.1 Unit testing vs. Integration testing
	6.2 Dependency Injection and Unit Testing
	6.3 Testing the functionality of the application
	6.4 Order of tests with JUnit
	6.5 JavaServer Faces
	7.1 Review of aims and objectives
	7.2 Problems encountered
	7.3 Learning outcomes
	7.4 Project conclusion
	9.3 UML Diagram of the prototype application
	9.4 Simplified Entity Relationship Diagram of the prototype application
	9.5 A code refactor example
	9.6 SQL scripts
	9.7 How to deploy and start the sample application
	9.8 How to deploy and start the sample application using JDeveloper
	9.9 Glossary
	9.10 Acronyms

